Toybrick

中文 / EN
Toybrick Wiki教程 TB-RK3399ProD 模型推理
模型推理

本章节主要讲解如何在Toybrick rk3399Pro开发板上调用RKNN Python API进行模型推理。

API调用流程

image.png

示例

import numpy as np
from PIL import Image
from rknn.api import RKNN
# 解析模型的输出,获得概率最大的手势和对应的概率
def get_predict(probability):
    data = probability[0][0]
    data = data.tolist()
    max_prob = max(data)
 
return data.index(max_prob), max_prob;
def load_model():
    # 创建RKNN对象
    rknn = RKNN()
    # 载入RKNN模型
    print('-->loading model')
    rknn.load_rknn('./digital_gesture.rknn')
    print('loading model done')
    # 初始化RKNN运行环境
    print('--> Init runtime environment')
    ret = rknn.init_runtime(target='rk3399pro')
    if ret != 0:
       print('Init runtime environment failed')
       exit(ret)
    print('done')
    return rknn
def predict(rknn):
    im = Image.open("../picture/6_7.jpg")   # 加载图片
    im = im.resize((64, 64),Image.ANTIALIAS)  # 图像缩放到64x64
    mat = np.asarray(im.convert('RGB'))    # 转换成RGB格式
    outputs = rknn.inference(inputs=[mat])   # 运行推理,得到推理结果
    pred, prob = get_predict(outputs)     # 将推理结果转化为可视信息
    print(prob)
    print(pred)
 
if __name__=="__main__":
    rknn = load_model()
    predict(rknn) 
 
    rknn.release()




产品中心 购买渠道 开源社区 Wiki教程 资料下载 关于Toybrick


返回顶部