- import numpy as np
- import re
- import math
- import random
- import cv2
- import time
- import os
- os.environ["CUDA_VISIBLE_DEVICES"] = ""
- from rknn.api import RKNN
- INPUT_SIZE_X = 512
- INPUT_SIZE_Y = 512
- SCALE = 2
- CHANLE = 14
- if __name__ == '__main__':
- # Create RKNN object
- rknn = RKNN()
- rknn.list_devices()
- #rknn.get_sdk_version()
- # # Config for Model Input PreProcess
- #rknn.config(channel_mean_value='123.68 116.78 103.94 58.82', reorder_channel='2 1 0')
- rknn.config(batch_size = 1,channel_mean_value='123.68 116.78 103.94 58.82', epochs = 5000,reorder_channel='2 1 0') #bgr to rgb
- # Load TensorFlow Model
- print('--> Loading model')#lightweight_openpose_5stage_462007_noelu lightweight_openpose_5stage_820019
- import pdb
- #pdb.set_trace()
- ret = rknn.load_onnx(model='./models/xxx.onnx')
- print('load model {}'.format(ret))
- # Build Model
- print('--> Building model')
- start = time.time()
- ret = rknn.build(do_quantization=True, dataset='./dataset_coco_val.txt', pre_compile=False)
- print('build time {}'.format(time.time() - start))
- print('build model {}'.format(ret))
- # Export RKNN Model
- print('--> Export model')
- ret = rknn.export_rknn('../rknn_models/xxx.rknn')
- if ret == -1:
- print('export failed')
- # Load RKNN Model
- print('--> loading model')
- ret = rknn.load_rknn('../rknn_models/xxx.rknn')
- # Set inputs
- input_data = np.expand_dims(img, axis=0)#.astype(np.float32)
- # init runtime environment
- print('--> Init runtime environment')
- ret = rknn.init_runtime(async_mode=False, target='rk1808',device_id='xxx')
- if ret != 0:
- print('Init runtime environment failed')
- exit(ret)
- sdk_verson = rknn.get_sdk_version()
- print(sdk_verson)
- # Inference
- print('--> Running model')
- import pdb
- #pdb.set_trace()
- outputs = rknn.inference(inputs=[input_data], data_format='nchw', data_type='uint8',inputs_pass_through=[0])
- rknn.eval_perf(inputs=[img], is_print=True)
- # Release RKNN Context
- rknn.release()
复制代码
欢迎光临 Toybrick (https://t.rock-chips.com/) | Powered by Discuz! X3.3 |