Toybrick

标题: 关于量化时的数据集矫正 [打印本页]

作者: LSC    时间: 2020-1-7 09:24
标题: 关于量化时的数据集矫正
大家好,
我的模型输入输出以及各层张量都是按照NCHW方式排列的,但是量化数据集矫正时的日志提示信息却是NWHC,如下,请问这回有什么影响吗?

  1. ...
  2. I Load net complete...
  3. I Load data...
  4. I Fitting image with scale.
  5. I Reorder channels.
  6. I Channel mean value [104.04, 113.985, 119.85, 71.0]
  7. I Quantization start...
  8. I Init validate tensor provider.
  9. I Enqueue samples 5000
  10. I Init provider with 5000 samples.
  11. I Load quantization tensor table
  12. D Optimizing network with qnt_hybrid_insert_layer
  13. D set up a quantize net
  14. D Process data_0 ...
  15. D RKNN output shape(input): (100 512 512 3)
  16. D Real output shape: (100, 512, 512, 3)
  17. D Process conv1_1 ...
  18. D RKNN output shape(convolution): (100 512 512 16)
  19. D Real output shape: (100, 512, 512, 16)
  20. D Process relu1_4 ...
  21. D RKNN output shape(relu): (100 512 512 16)
  22. D Real output shape: (100, 512, 512, 16)
  23. D Process conv2_5 ...
  24. D RKNN output shape(convolution): (100 512 512 16)
  25. D Real output shape: (100, 512, 512, 16)
  26. D Process relu2_8 ...
  27. D RKNN output shape(relu): (100 512 512 16)
  28. D Real output shape: (100, 512, 512, 16)
  29. D Process conv3_9 ...
  30. D RKNN output shape(convolution): (100 256 256 32)
  31. D Real output shape: (100, 256, 256, 32)
  32. D Process relu3_12 ...
  33. D RKNN output shape(relu): (100 256 256 32)
  34. D Real output shape: (100, 256, 256, 32)
  35. D Process conv5_17 ...
  36. D RKNN output shape(convolution): (100 128 128 64)
  37. D Real output shape: (100, 128, 128, 64)
  38. D Process relu4_20 ...
  39. D RKNN output shape(relu): (100 128 128 64)
  40. D Real output shape: (100, 128, 128, 64)
  41. ...
复制代码









欢迎光临 Toybrick (https://t.rock-chips.com/) Powered by Discuz! X3.3