-     model = Darknet(opt.model_def, img_size=opt.img_size)
 
-     model.load_state_dict(torch.load("./checkpoints/custom_yolov3_ckpt_900.pth", map_location=torch.device('cpu')))
 
-     model.eval()
 
-     trace_model = torch.jit.trace(model, torch.Tensor(1,3,448,448))
 
-     trace_model.save('./yoloV3.pt')
 
-     np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
 
-     model_path = './yoloV3.pt'
 
-     input_size_list = [[3, 448, 448]]
 
 
-     # Create RKNN object
 
-     rknn = RKNN()
 
-     print('--> config model')
 
-     rknn.config(channel_mean_value='0. 0. 0. 255.', reorder_channel='0 1 2')
 
-     print('done')
 
 
-     # Load pytorch model
 
-     print('--> Loading model')
 
-     ret = rknn.load_pytorch(model=model_path, input_size_list=input_size_list)
 
-     if ret != 0:
 
-         print('Load pytorch model failed!')
 
-         exit(ret)
 
-     print('done')
 
 
-     # Build model
 
-     print('--> Building model')
 
-     # 不量化,结果基本一致
 
-     ret = rknn.build(do_quantization=False, dataset='./valid.txt')
 
-     if ret != 0:
 
-         print('Build pytorch failed!')
 
-         exit(ret)
 
-     print('done')
 
 
-     # Export rknn model
 
-     print('--> Export RKNN model')
 
-     ret = rknn.export_rknn('./yoloV3.rknn')
 
-     if ret != 0:
 
-         print('Export yoloV3.rknn failed!')
 
-         exit(ret)
 
-     print('done')
 
 
-     ret = rknn.load_rknn('./yoloV3.rknn')
 
 
-     # Set inputs
 
-     img = cv2.imread('./data/custom/images/train.jpg')
 
-     img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 
-     # 归一化
 
-     img = np.array(img, dtype=np.float32)
 
-     img = np.array((img-img.min()) / img.ptp())
 
-     # print("img: ", img)
 
 
-     # init runtime environment
 
-     print('--> Init runtime environment')
 
-     ret = rknn.init_runtime()
 
-     if ret != 0:
 
-         print('Init runtime environment failed')
 
-         exit(ret)
 
-     print('done')
 
 
-     # Inference
 
-     print('--> Running model')
 
-     outputs = rknn.inference(inputs=[img])
 
-     print('done')
 
 
-     # # perf
 
-     print('--> Begin evaluate model performance')
 
-     perf_results = rknn.eval_perf(inputs=[img])
 
-     print('done')
 
-     rknn.release()
复制代码| 欢迎光临 Toybrick (https://t.rock-chips.com/) | Powered by Discuz! X3.3 |