- input: "data"
 - input_dim: 1
 - input_dim: 3
 - input_dim: 16
 - input_dim: 66
 - layer {
 -   name: "conv1"
 -   type: "Convolution"
 -   bottom: "data"
 -   top: "conv1"
 -   convolution_param {
 -     num_output: 10
 -     bias_term: true
 -     pad: 0
 -     kernel_size: 3
 -     stride: 1
 -   }
 - }
 - layer {
 -   name: "relu1"
 -   type: "ReLU"
 -   bottom: "conv1"
 -   top: "conv1"
 - }
 - layer {
 -   name: "max_pooling2d_3"
 -   type: "Pooling"
 -   bottom: "conv1"
 -   top: "max_pooling2d_3"
 -   pooling_param {
 -     pool: MAX
 -     kernel_size: 2
 -     stride: 2
 -     pad: 0
 -   }
 - }
 - layer {
 -   name: "conv2"
 -   type: "Convolution"
 -   bottom: "max_pooling2d_3"
 -   top: "conv2"
 -   convolution_param {
 -     num_output: 16
 -     bias_term: true
 -     pad: 0
 -     kernel_size: 3
 -     stride: 1
 -   }
 - }
 - layer {
 -   name: "relu2"
 -   type: "ReLU"
 -   bottom: "conv2"
 -   top: "conv2"
 - }
 - layer {
 -   name: "conv3"
 -   type: "Convolution"
 -   bottom: "conv2"
 -   top: "conv3"
 -   convolution_param {
 -     num_output: 32
 -     bias_term: true
 -     pad: 0
 -     kernel_size: 3
 -     stride: 1
 -   }
 - }
 - layer {
 -   name: "relu3"
 -   type: "ReLU"
 -   bottom: "conv3"
 -   top: "conv3"
 - }
 - layer {
 -   name: "flatten_2"
 -   type: "Flatten"
 -   bottom: "conv3"
 -   top: "flatten_2"
 - }
 - layer {
 -   name: "dense"
 -   type: "InnerProduct"
 -   bottom: "flatten_2"
 -   top: "dense"
 -   inner_product_param {
 -     num_output: 2
 -   }
 - }
 - layer {
 -   name: "relu4"
 -   type: "ReLU"
 -   bottom: "dense"
 -   top: "dense"
 - }
 
复制代码我改成- # input: "data"
 - # input_dim: 1
 - # input_dim: 3
 - # input_dim: 16
 - # input_dim: 66
 - layer {
 -   name: "data"
 -   type: "Input"
 -   top: "data"
 -   input_param { shape: { dim: 1 dim: 3 dim: 16 dim: 66 } }
 - }
 - layer {
 -   name: "conv1"
 -   type: "Convolution"
 -   bottom: "data"
 -   top: "conv1"
 -   convolution_param {
 -     num_output: 10
 -     bias_term: true
 -     pad: 0
 -     kernel_size: 3
 -     stride: 1
 -   }
 - }
 - layer {
 -   name: "relu1"
 -   type: "ReLU"
 -   bottom: "conv1"
 -   top: "conv1"
 - }
 - layer {
 -   name: "max_pooling2d_3"
 -   type: "Pooling"
 -   bottom: "conv1"
 -   top: "max_pooling2d_3"
 -   pooling_param {
 -     pool: MAX
 -     kernel_size: 2
 -     stride: 2
 -     pad: 0
 -   }
 - }
 - layer {
 -   name: "conv2"
 -   type: "Convolution"
 -   bottom: "max_pooling2d_3"
 -   top: "conv2"
 -   convolution_param {
 -     num_output: 16
 -     bias_term: true
 -     pad: 0
 -     kernel_size: 3
 -     stride: 1
 -   }
 - }
 - layer {
 -   name: "relu2"
 -   type: "ReLU"
 -   bottom: "conv2"
 -   top: "conv2"
 - }
 - layer {
 -   name: "conv3"
 -   type: "Convolution"
 -   bottom: "conv2"
 -   top: "conv3"
 -   convolution_param {
 -     num_output: 32
 -     bias_term: true
 -     pad: 0
 -     kernel_size: 3
 -     stride: 1
 -   }
 - }
 - layer {
 -   name: "relu3"
 -   type: "ReLU"
 -   bottom: "conv3"
 -   top: "conv3"
 - }
 - layer {
 -   name: "flatten_2"
 -   type: "Flatten"
 -   bottom: "conv3"
 -   top: "flatten_2"
 - }
 - layer {
 -   name: "dense"
 -   type: "InnerProduct"
 -   bottom: "flatten_2"
 -   top: "dense"
 -   inner_product_param {
 -     num_output: 2
 -   }
 - }
 - layer {
 -   name: "relu4"
 -   type: "ReLU"
 -   bottom: "dense"
 -   top: "dense"
 - }
 
复制代码模型在加载阶段rknn.load_caffe就出错了,报错信息如下所示- --> config model
 - done
 - --> Loading model
 - E Catch exception when loading caffe model: ./HorizonalFinemapping.prototxt!
 - E Traceback (most recent call last):
 - E   File "rknn\api\rknn_base.py", line 441, in rknn.api.rknn_base.RKNNBase.load_caffe
 - E   File "rknn\base\RKNNlib\converter\caffeloader.py", line 1042, in rknn.base.RKNNlib.converter.caffeloader.CaffeLoader.load_blobs
 - E   File "rknn\base\RKNNlib\converter\caffeloader.py", line 935, in rknn.base.RKNNlib.converter.caffeloader.CaffeLoader.parse_blobs
 - E   File "rknn\base\RKNNlib\converter\caffeloader.py", line 358, in rknn.base.RKNNlib.converter.caffeloader.proc_blobs_convolution
 - E   File "G:\ProgramData\Anaconda3\envs\rknn\lib\site-packages\numpy\core\fromnumeric.py", line 292, in reshape
 - E     return _wrapfunc(a, 'reshape', newshape, order=order)
 - E   File "G:\ProgramData\Anaconda3\envs\rknn\lib\site-packages\numpy\core\fromnumeric.py", line 56, in _wrapfunc
 - E     return getattr(obj, method)(*args, **kwds)
 - E ValueError: cannot reshape array of size 0 into shape (10,3,3,3)
 - Load model failed! Ret = -1
 
复制代码模型文件地址是https://github.com/zeusees/Hyper ... nception.caffemodel- D Save log info to: ./caffe.log
 - --> config model
 - done
 - --> Loading model
 - I Set caffe proto to caffe
 - I Load caffe model ./HorizonalFinemapping.prototxt
 - I Parsing net parameters ...
 - D import clients finished
 - I Parsing layer parameters ...
 - D Convert layer image
 - D Convert layer conv1
 - D Convert layer relu1
 - D Convert layer max_pooling2d_3
 - D Convert layer conv2
 - D Convert layer relu2
 - D Convert layer conv3
 - D Convert layer relu3
 - D Convert layer flatten_2
 - D Convert layer dense
 - D Convert layer relu4
 - I Parsing connections ...
 - D Connect: image_0,0 to conv1_1,0
 - D Connect: conv1_1,0 to relu1_2,0
 - D Connect: relu1_2,0 to max_pooling2d_3_3,0
 - D Connect: max_pooling2d_3_3,0 to conv2_4,0
 - D Connect: conv2_4,0 to relu2_5,0
 - D Connect: relu2_5,0 to conv3_6,0
 - D Connect: conv3_6,0 to relu3_7,0
 - D Connect: relu3_7,0 to flatten_2_8,0
 - D Connect: flatten_2_8,0 to dense_9,0
 - D Connect: dense_9,0 to relu4_10,0
 - D Connect: relu4_10,0 to output_11,0,
 - I Load net complete.
 - 2020-06-29 16:50:26.078880: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
 - D Process image_0 ...
 - D RKNN output shape(input): (0 16 66 3)
 - D Process conv1_1 ...
 - D RKNN output shape(convolution): (0 14 64 10)
 - D Process relu1_2 ...
 - D RKNN output shape(relu): (0 14 64 10)
 - D Process max_pooling2d_3_3 ...
 - D RKNN output shape(pooling): (0 7 32 10)
 - D Process conv2_4 ...
 - D RKNN output shape(convolution): (0 5 30 16)
 - D Process relu2_5 ...
 - D RKNN output shape(relu): (0 5 30 16)
 - D Process conv3_6 ...
 - D RKNN output shape(convolution): (0 3 28 32)
 - D Process relu3_7 ...
 - D RKNN output shape(relu): (0 3 28 32)
 - D Process flatten_2_8 ...
 - D RKNN output shape(flatten): (0 2688)
 - D Process dense_9 ...
 - D RKNN output shape(fullconnect): (0 2)
 - D Process relu4_10 ...
 - D RKNN output shape(relu): (0 2)
 - D Process output_11 ...
 - D RKNN output shape(output): (0 2)
 - I Build  complete.
 - I Load blobs from caffe model ./HorizonalFinemapping.caffemodel
 - I Check if ./HorizonalFinemapping.caffemodel contains 'type' value
 - I Parsing net blobs ...
 - D Load blobs of conv1
 - E Catch exception when loading caffe model: ./HorizonalFinemapping.prototxt!
 - E Traceback (most recent call last):
 - E   File "rknn\api\rknn_base.py", line 441, in rknn.api.rknn_base.RKNNBase.load_caffe
 - E   File "rknn\base\RKNNlib\converter\caffeloader.py", line 1042, in rknn.base.RKNNlib.converter.caffeloader.CaffeLoader.load_blobs
 - E   File "rknn\base\RKNNlib\converter\caffeloader.py", line 935, in rknn.base.RKNNlib.converter.caffeloader.CaffeLoader.parse_blobs
 - E   File "rknn\base\RKNNlib\converter\caffeloader.py", line 358, in rknn.base.RKNNlib.converter.caffeloader.proc_blobs_convolution
 - E   File "G:\ProgramData\Anaconda3\envs\rknn\lib\site-packages\numpy\core\fromnumeric.py", line 292, in reshape
 - E     return _wrapfunc(a, 'reshape', newshape, order=order)
 - E   File "G:\ProgramData\Anaconda3\envs\rknn\lib\site-packages\numpy\core\fromnumeric.py", line 56, in _wrapfunc
 - E     return getattr(obj, method)(*args, **kwds)
 - E ValueError: cannot reshape array of size 0 into shape (10,3,3,3)
 - Load model failed! Ret = -1
 
复制代码
| 欢迎光临 Toybrick (https://t.rock-chips.com/) | Powered by Discuz! X3.3 |