模型转换(有3个输出节点,去除DetectionOutput层): D Process mbox_loc_70 ...
D RKNN output shape(concat): (0 17680) D Process output_73 ...
D RKNN output shape(output): (0 17680)
D Process conv3_3_norm_mbox_conf_new_42 ...
D RKNN output shape(convolution): (0 30 40 6)
D Process conv3_3_norm_mbox_conf_perm_43 ...
D RKNN output shape(permute): (0 30 40 6)
D Process conv3_3_norm_mbox_conf_flat_44 ...
D RKNN output shape(flatten): (0 7200)
D Process conv4_3_norm_mbox_conf_50 ...
D RKNN output shape(convolution): (0 15 20 4)
D Process conv4_3_norm_mbox_conf_perm_51 ...
D RKNN output shape(permute): (0 15 20 4)
D Process conv4_3_norm_mbox_conf_flat_52 ...
D RKNN output shape(flatten): (0 1200)
D Process conv5_3_norm_mbox_conf_58 ...
D RKNN output shape(convolution): (0 8 10 4)
D Process conv5_3_norm_mbox_conf_perm_59 ...
D RKNN output shape(permute): (0 8 10 4)
D Process conv5_3_norm_mbox_conf_flat_60 ...
D RKNN output shape(flatten): (0 320)
D Process conv6_3_norm_mbox_conf_66 ...
D RKNN output shape(convolution): (0 4 5 6)
D Process conv6_3_norm_mbox_conf_perm_67 ...
D RKNN output shape(permute): (0 4 5 6)
D Process conv6_3_norm_mbox_conf_flat_68 ...
D RKNN output shape(flatten): (0 120)
D Process mbox_conf_71 ...
D RKNN output shape(concat): (0 8840) D Process output_74 ...
D RKNN output shape(output): (0 8840)
D Process conv3_3_norm_mbox_priorbox_45 ...
D RKNN output shape(priorbox): (0 14400 1 2)
D Process conv4_3_norm_mbox_priorbox_53 ...
D RKNN output shape(priorbox): (0 2400 1 2)
D Process conv5_3_norm_mbox_priorbox_61 ...
D RKNN output shape(priorbox): (0 640 1 2)
D Process conv6_3_norm_mbox_priorbox_69 ...
D RKNN output shape(priorbox): (0 240 1 2)
D Process mbox_priorbox_72 ...
D RKNN output shape(concat): (0 17680 1 2) D Process output_75 ...
D RKNN output shape(output): (0 17680 1 2)
I Build SSDNet complete.
W verbose file path is invalid, debug info will not dump to file.
I [rknn_CreateRKNN:3132]rknn_CreateRKNN
I [rknn_CreateRKNN:3202]NET_NODE_NUM=49
I [rknn_CreateRKNN:3211]NET_NORM_TENSOR_NUM=3
I [rknn_CreateRKNN:3220]NET_CONST_TENSOR_NUM=52
I [rknn_CreateRKNN:3229]NET_VIRTUAL_TENSOR_NUM =49
I [rknn_CreateRKNN:3240]input_num =1
I [rknn_CreateRKNN:3248]output_num =2
D [setup_nodes:2408]setup node:0
I [setup_nodes:2412]name=conv1_1_1_relu1_1_2
I [setup_nodes:2420]uid=2
I [str2op:117]op=RK_NN_OP_CONV_RELU, id=3
I [setup_nodes:2428]op=3 作者: jefferyzhang 时间: 2019-4-12 16:08
rknn支持多输出,请参看我们配套给出的ssd demo作者: RK3399 时间: 2019-4-12 16:50 你们给出的demo中仍然只有两个输出节点,而且没有基于caffe模型的,如下,第三个节点数据使用的是文本文件静态导入的prior box,我不太清楚这样做的原因?
# Create RKNN object
rknn = RKNN()
# Config for Model Input PreProcess
rknn.config(channel_mean_value='128 128 128 128', reorder_channel='0 1 2')