jefferyzhang 发表于 2019-7-8 14:32
代码太长了没办法帮你调试,建议你可以按以下思路调试:
1. rknn的层默认未量化是FP16,精度和TF默认FP32有 ...
- --> config model
- done
- --> Loading model
- done
- --> Building model
- done
- --> Export RKNN model
- done
- --> Init runtime environment
- done
- --> Running model
- lenet
- -----TOP 5-----
- [2]: 0.59814453125
- [6]: 0.274169921875
- [3]: 0.037811279296875
- [1]: 0.0258941650390625
- [8]: 0.02532958984375
- done
- --> Begin evaluate model performance
- ========================================================================
- Performance
- ========================================================================
- Layer ID Name Time(us)
- 8 convolution.relu.pooling.layer2_2 15
- 9 convolution.relu.pooling.layer2_2 95
- 10 fullyconnected.relu.layer_3 86
- 11 fullyconnected.relu.layer_3 7
- Total Time(us): 203
- FPS(800MHz): 4926.11
- ========================================================================
- done
复制代码
- [1.7805099e-03 2.5894165e-02 5.9814453e-01 3.7811279e-02 1.2107849e-02
- 2.2293091e-02 2.7416992e-01 2.4204254e-03 2.5329590e-02 1.3971329e-04]
复制代码
hisping 发表于 2019-8-9 09:28
你转模型时input_size_list=[[28, 28, 1]]才对吧,试一试
- name: "LeNet"
- layer {
- name: "input"
- type: "Input"
- top: "data"
- input_param {
- shape {
- dim: 64
- dim: 1
- dim: 28
- dim: 28
- }
- }
- }
复制代码
Ningbo 发表于 2019-8-9 16:29
标准网络模型就是28*28,本身输入就是28*28图片。
问题不在于这里,已经解决了。
谢谢啦 ...
欢迎光临 Toybrick (https://t.rock-chips.com/) | Powered by Discuz! X3.3 |