|  | 
| 本帖最后由 wali 于 2020-4-15 23:28 编辑 
 API Version:1.3.0Driver Version : 1.3.1D [print_tensor:136]out(0): id[ 195] vtl[1] const[0] shape[ 32, 32, 256, 1   ] fmt[u8 ] qnt[ASM zp=114, scale=0.014985]
D [setup_node:368]Setup node id[58] uid[156] op[RELU]
D [print_tensor:136]in(0) : id[ 193] vtl[1] const[0] shape[ 32, 32, 256, 1   ] fmt[u8 ] qnt[ASM zp=  0, scale=0.007946]
D [print_tensor:136]out(0): id[ 196] vtl[1] const[0] shape[ 32, 32, 256, 1   ] fmt[u8 ] qnt[ASM zp=  0, scale=0.007946]
D [setup_node:368]Setup node id[59] uid[108] op[DECONVOLUTION]
D [print_tensor:136]in(0) : id[ 194] vtl[1] const[0] shape[ 64, 64, 64, 1    ] fmt[u8 ] qnt[ASM zp=  0, scale=0.007091]
D [print_tensor:136]in(1) : id[  50] vtl[0] const[1] shape[ 5, 5, 64, 64     ] fmt[u8 ] qnt[ASM zp=111, scale=0.009331]
D [print_tensor:136]in(2) : id[  51] vtl[0] const[1] shape[ 64               ] fmt[i32] qnt[ASM zp=  0, scale=0.000066]
D [print_tensor:136]out(0): id[ 197] vtl[1] const[0] shape[ 131, 131, 64, 1  ] fmt[u8 ] qnt[ASM zp= 62, scale=0.055957]
D [setup_node:368]Setup node id[60] uid[145] op[CONV2D]
D [print_tensor:136]in(0) : id[ 196] vtl[1] const[0] shape[ 32, 32, 256, 1   ] fmt[u8 ] qnt[ASM zp=  0, scale=0.007946]
D [print_tensor:136]in(1) : id[  52] vtl[0] const[1] shape[ 3, 3, 256, 256   ] fmt[u8 ] qnt[ASM zp=151, scale=0.002047]
D [print_tensor:136]in(2) : id[  53] vtl[0] const[1] shape[ 256              ] fmt[i32] qnt[ASM zp=  0, scale=0.000016]
D [print_tensor:136]out(0): id[ 198] vtl[1] const[0] shape[ 32, 32, 256, 1   ] fmt[u8 ] qnt[ASM zp=143, scale=0.019981]
D [setup_node:368]Setup node id[61] uid[109] op[SLICE]
D [print_tensor:136]in(0) : id[ 197] vtl[1] const[0] shape[ 131, 131, 64, 1  ] fmt[u8 ] qnt[ASM zp= 62, scale=0.055957]
D [print_tensor:136]out(0): id[ 199] vtl[1] const[0] shape[ 64, 128, 128, 4  ] fmt[u8 ] qnt[ASM zp= 62, scale=0.055957]
D [setup_node:368]Setup node id[62] uid[120] op[ADD]
D [print_tensor:136]in(0) : id[ 198] vtl[1] const[0] shape[ 32, 32, 256, 1   ] fmt[u8 ] qnt[ASM zp=143, scale=0.019981]
D [print_tensor:136]in(1) : id[ 195] vtl[1] const[0] shape[ 32, 32, 256, 1   ] fmt[u8 ] qnt[ASM zp=114, scale=0.014985]
D [print_tensor:136]out(0): id[ 200] vtl[1] const[0] shape[ 32, 32, 256, 1   ] fmt[u8 ] qnt[ASM zp=144, scale=0.024428]
D [setup_node:368]Setup node id[63] uid[97] op[ADD]
E [op_check:103]Invalid broadcast for inputs[0] size[64]
E [setup_node:383]Check node[63] ADD fail
Segmentation fault (core dumped)
在PC上运行遇到了相同的问题,在混合量化自己模型的时候 !不混合量化是没问题的!
 在RKPro上报以下错误:
 
 I NPUTransfer: Starting NPU Transfer Client, Transfe
r version 1.9.8 (cab3961@2019-12-12T09:54:26)
D NPUTransfer: Transfer spec = local:transfer_proxy
D NPUTransfer: Transfer interface successfully opene
d, fd = 9
E RKNNAPI: rknn_init,  msg_load_ack fail, ack = 1(ACK_FAIL), expect 0(ACK_SUCC)!
E RKNNAPI: ==============================================
E RKNNAPI: RKNN VERSION:
E RKNNAPI:   API: 1.3.0 (c5654ea build: 2019-12-25 12:40:55)
E RKNNAPI:   DRV: 1.3.1 (6ebb4d7 build: 2020-01-02 09:37:58)
E RKNNAPI: ==============================================
D NPUTransfer: Transfer client closed, fd = 9
E Catch exception when init runtime!
E Traceback (most recent call last):
E   File "rknn/api/rknn_base.py", line 988, in rknn.api.rknn_base.RKNNBase.init_runtime
E   File "rknn/api/rknn_runtime.py", line 320, in rknn.api.rknn_runtime.RKNNRuntime.build_graph
E Exception: RKNN init failed. error code: RKNN_ERR_MODEL_INVALID
Init runtime environment failed!
 
 | 
 |