|
没试过多线程,post process都是cpu在跑,直接用了多进程搞,FPS大概20.
- import logging as log
- import time
- import numpy as np
- import cv2
- from rknn.api import RKNN
- from multiprocessing import Process, Queue
- GRID0 = 13
- GRID1 = 26
- LISTSIZE = 85
- SPAN = 3
- NUM_CLS = 80
- MAX_BOXES = 500
- OBJ_THRESH = 0.2
- NMS_THRESH = 0.2
- CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
- "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
- "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
- "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
- "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
- "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop ","mouse ","remote ","keyboard ","cell phone","microwave ",
- "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
- def sigmoid(x):
- return 1 / (1 + np.exp(-x))
- def process(input, mask, anchors):
- anchors = [anchors[i] for i in mask]
- grid_h, grid_w = map(int, input.shape[0:2])
- box_confidence = sigmoid(input[..., 4])
- box_confidence = np.expand_dims(box_confidence, axis=-1)
- box_class_probs = sigmoid(input[..., 5:])
- box_xy = sigmoid(input[..., :2])
- box_wh = np.exp(input[..., 2:4])
- box_wh = box_wh * anchors
- col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
- row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
- col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- grid = np.concatenate((col, row), axis=-1)
- box_xy += grid
- box_xy /= (grid_w, grid_h)
- box_wh /= (416, 416)
- box_xy -= (box_wh / 2.)
- box = np.concatenate((box_xy, box_wh), axis=-1)
- return box, box_confidence, box_class_probs
- def filter_boxes(boxes, box_confidences, box_class_probs):
- """Filter boxes with object threshold.
- # Arguments
- boxes: ndarray, boxes of objects.
- box_confidences: ndarray, confidences of objects.
- box_class_probs: ndarray, class_probs of objects.
- # Returns
- boxes: ndarray, filtered boxes.
- classes: ndarray, classes for boxes.
- scores: ndarray, scores for boxes.
- """
- box_scores = box_confidences * box_class_probs
- box_classes = np.argmax(box_scores, axis=-1)
- box_class_scores = np.max(box_scores, axis=-1)
- pos = np.where(box_class_scores >= OBJ_THRESH)
- boxes = boxes[pos]
- classes = box_classes[pos]
- scores = box_class_scores[pos]
- return boxes, classes, scores
- def nms_boxes(boxes, scores):
- """Suppress non-maximal boxes.
- # Arguments
- boxes: ndarray, boxes of objects.
- scores: ndarray, scores of objects.
- # Returns
- keep: ndarray, index of effective boxes.
- """
- x = boxes[:, 0]
- y = boxes[:, 1]
- w = boxes[:, 2]
- h = boxes[:, 3]
- areas = w * h
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x[i], x[order[1:]])
- yy1 = np.maximum(y[i], y[order[1:]])
- xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
- yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
- w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
- h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
- inter = w1 * h1
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= NMS_THRESH)[0]
- order = order[inds + 1]
- keep = np.array(keep)
- return keep
- def yolov3_post_process(input_data):
- # # yolov3
- # masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
- # anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- # [59, 119], [116, 90], [156, 198], [373, 326]]
- # yolov3-tiny
- masks = [[3, 4, 5], [0, 1, 2]]
- anchors = [[10, 14], [23, 27], [37, 58], [81, 82], [135, 169], [344, 319]]
- boxes, classes, scores = [], [], []
- for input,mask in zip(input_data, masks):
- b, c, s = process(input, mask, anchors)
- b, c, s = filter_boxes(b, c, s)
- boxes.append(b)
- classes.append(c)
- scores.append(s)
- boxes = np.concatenate(boxes)
- classes = np.concatenate(classes)
- scores = np.concatenate(scores)
- # # Scale boxes back to original image shape.
- # width, height = 416, 416 #shape[1], shape[0]
- # image_dims = [width, height, width, height]
- # boxes = boxes * image_dims
- nboxes, nclasses, nscores = [], [], []
- for c in set(classes):
- inds = np.where(classes == c)
- b = boxes[inds]
- c = classes[inds]
- s = scores[inds]
- keep = nms_boxes(b, s)
- nboxes.append(b[keep])
- nclasses.append(c[keep])
- nscores.append(s[keep])
- if not nclasses and not nscores:
- return None, None, None
- boxes = np.concatenate(nboxes)
- classes = np.concatenate(nclasses)
- scores = np.concatenate(nscores)
- return boxes, classes, scores
- def draw(image, boxes, scores, classes):
- """Draw the boxes on the image.
- # Argument:
- image: original image.
- boxes: ndarray, boxes of objects.
- classes: ndarray, classes of objects.
- scores: ndarray, scores of objects.
- all_classes: all classes name.
- """
- for box, score, cl in zip(boxes, scores, classes):
- x, y, w, h = box
- # print('class: {}, score: {}'.format(CLASSES[cl], score))
- # print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(x, y, x+w, y+h))
- x *= image.shape[1]
- y *= image.shape[0]
- w *= image.shape[1]
- h *= image.shape[0]
- top = max(0, np.floor(x + 0.5).astype(int))
- left = max(0, np.floor(y + 0.5).astype(int))
- right = min(image.shape[1], np.floor(x + w + 0.5).astype(int))
- bottom = min(image.shape[0], np.floor(y + h + 0.5).astype(int))
- # print('class: {}, score: {}'.format(CLASSES[cl], score))
- # print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
- cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
- cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
- (top, left - 6),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.6, (0, 0, 255), 2)
- # print('class: {0}, score: {1:.2f}'.format(CLASSES[cl], score))
- # print('box coordinate x,y,w,h: {0}'.format(box))
- def load_model():
- rknn = RKNN()
- print('-->loading model')
- rknn.load_rknn('./model/yolov3_tiny.rknn')
- #rknn.load_rknn('./yolov3.rknn')
- print('loading model done')
- print('--> Init runtime environment')
- ret = rknn.init_runtime(target='rk3399pro')
- if ret != 0:
- print('Init runtime environment failed')
- exit(ret)
- print('done')
- return rknn
- def video_capture(src, q_frame:Queue):
- #video = VideoCapture.Video(src)
- video = cv2.VideoCapture(int(src))
- while True:
- s = time.time()
- #frame = video.get_last_frame()
- ret, frame = video.read()
- assert ret, 'read video frame failed.'
- if q_frame.empty():
- s = time.time()
- q_frame.put(frame)
- print("get frame and put to queue used {} ms".format((time.time()-s)*1000))
- else:
- print("get frame but skiped, used {} ms".format((time.time()-s)*1000))
- def infer_rknn(q_image:Queue, q_infer:Queue):
- rknn = load_model()
- rknn.get_sdk_version()
- while True:
- s = time.time()
- image = q_image.get()
- print('Infer recv frame, used time {} ms. '.format((time.time() - s) * 1000))
- s = time.time()
- out_boxes, out_boxes2 = rknn.inference(inputs=[image])
- out_boxes = out_boxes.reshape(SPAN, LISTSIZE, GRID0, GRID0)
- out_boxes2 = out_boxes2.reshape(SPAN, LISTSIZE, GRID1, GRID1)
- input_data = []
- input_data.append(np.transpose(out_boxes, (2, 3, 0, 1)))
- input_data.append(np.transpose(out_boxes2, (2, 3, 0, 1)))
- q_infer.put(input_data)
- print('Infer done, used time {} ms. '.format((time.time()-s)*1000))
- def post_process(q_infer, q_objs):
- while True:
- s = time.time()
- input_data = q_infer.get()
- log.info('Post process recv input, used time {} ms. '.format((time.time() - s) * 1000))
- s = time.time()
- boxes, classes, scores = yolov3_post_process(input_data)
- q_objs.put((boxes, classes, scores))
- log.info('Post process done, used time {} ms. '.format((time.time()-s)*1000))
- if __name__ == '__main__':
- log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.DEBUG)
- q_frame = Queue()
- q_image = Queue()
- q_infer = Queue()
- q_objs = Queue()
- p_cap = Process(target=video_capture, args=('0',q_frame))
- p_infer = Process(target=infer_rknn, args=(q_image, q_infer))
- p_post = Process(target=post_process, args=(q_infer, q_objs))
- p_infer.start()
- p_cap.start()
- p_post.start()
- #p_show.start()
- l_frame = []
- fps = 0
- l_used_time = []
- while True:
- s = time.time()
- frame = q_frame.get()
- image = cv2.resize(frame, (416, 416))
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- q_image.put(image)
- l_frame.append(frame)
- if q_objs.empty() and (len(l_frame) < 3):
- continue
- else:
- objects = q_objs.get()
- frame = l_frame.pop(0)
- boxes, classes, scores = objects
- if boxes is not None:
- draw(frame, boxes, scores, classes)
- cv2.putText(frame, text='FPS: {}'.format(fps), org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
- fontScale=0.50, color=(255, 0, 0), thickness=2)
- cv2.imshow("results", frame)
- c = cv2.waitKey(5) & 0xff
- if c == 27:
- cv2.destroyAllWindows()
- break
- used_time = time.time() - s
- l_used_time.append(used_time)
- if len(l_used_time) > 20:
- l_used_time.pop(0)
- fps = int(1/np.mean(l_used_time))
- print('All done, used time {} ms. '.format(used_time*1000))
- p_cap.terminate()
- p_infer.terminate()
- p_post.terminate()
- exit()
|
|