Toybrick

deprecated caffe input usage, please change it to input layer

chuyee

中级会员

积分
352
楼主
发表于 2019-2-13 08:57:22    查看: 28159|回复: 15 | [复制链接]    打印 | 只看该作者
本帖最后由 chuyee 于 2019-2-27 01:49 编辑

$ python test.py
/usr/lib64/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
--> config model
done
--> Loading model
Catch exception when loading caffe model: ./pose_deploy_linevec.prototxt!
Traceback (most recent call last):
  File "/usr/local/lib64/python3.6/site-packages/rknn/api/rknn.py", line 75, in load_caffe
    ret = self.rknn_base.load_caffe(model, proto, blobs)
  File "rknn/api/redirect_stdout.py", line 67, in rknn.api.redirect_stdout.redirect_stdout.func_wrapper
  File "rknn/api/redirect_stdout.py", line 68, in rknn.api.redirect_stdout.redirect_stdout.func_wrapper
  File "rknn/api/rknn_base.py", line 240, in rknn.api.rknn_base.RKNNBase.load_caffe
  File "rknn/base/rknnlib/converter/caffeloader.py", line 963, in rknn.base.rknnlib.converter.caffeloader.CaffeLoader.load
  File "rknn/base/rknnlib/converter/caffeloader.py", line 745, in rknn.base.rknnlib.converter.caffeloader.CaffeLoader.parse_net_param
  File "rknn/base/rknnlib/rknnlog.py", line 105, in rknn.base.rknnlib.rknnlog.rknnLog.e
ValueError: Deprecated caffe input usage, please change it to input layer.

Which part of the input is deprecated? How to change the input layer?

回复

使用道具 举报

yhc

注册会员

积分
177
沙发
发表于 2019-2-13 15:39:45 | 只看该作者
prototxt格式是旧的,可以按照下面格式修改
  1. name: "MOBILENET_V2"
  2. #  transform_param {
  3. #    scale: 0.017
  4. #    mirror: false
  5. #    crop_size: 224
  6. #    mean_value: [103.94,116.78,123.68]
  7. #  }
  8. layer {
  9.   name: "data"
  10.   type: "Input"
  11.   top: "data"
  12.   input_param {
  13.     shape {
  14.       dim: 1
  15.       dim: 3
  16.       dim: 224
  17.       dim: 224
  18.     }
  19.   }
  20. }
复制代码
回复

使用道具 举报

chuyee

中级会员

积分
352
板凳
 楼主| 发表于 2019-2-15 09:34:55 | 只看该作者
yhc 发表于 2019-2-13 15:39
prototxt格式是旧的,可以按照下面格式修改

Thanks! I modified the input layer according to your example. The "input is deprecated" error goes away now. However I encountered a new problem as below. Could you please help to check what might be wrong with it?

--> Loading model
Catch exception when loading caffe model: ./pose_modified.prototxt!
Traceback (most recent call last):
  File "/usr/local/lib64/python3.6/site-packages/rknn/api/rknn.py", line 75, in load_caffe
    ret = self.rknn_base.load_caffe(model, proto, blobs)
  File "rknn/api/redirect_stdout.py", line 67, in rknn.api.redirect_stdout.redirect_stdout.func_wrapper
  File "rknn/api/redirect_stdout.py", line 68, in rknn.api.redirect_stdout.redirect_stdout.func_wrapper
  File "rknn/api/rknn_base.py", line 243, in rknn.api.rknn_base.RKNNBase.load_caffe
  File "rknn/base/rknnlib/rknnnetbuilder.py", line 114, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build
  File "rknn/base/rknnlib/rknnnetbuilder.py", line 132, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build_layer
  File "rknn/base/rknnlib/rknnnetbuilder.py", line 132, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build_layer
  File "rknn/base/rknnlib/rknnnetbuilder.py", line 132, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build_layer
  [Previous line repeated 104 more times]
  File "rknn/base/rknnlib/rknnnetbuilder.py", line 138, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build_layer
  File "rknn/base/rknnlib/layer/rknnlayer.py", line 247, in rknn.base.rknnlib.layer.rknnlayer.rknnLayer.compute_shape
  File "rknn/base/rknnlib/layer/convolution.py", line 65, in rknn.base.rknnlib.layer.convolution.Convolution.compute_out_shape
AttributeError: 'NoneType' object has no attribute 'format'
回复

使用道具 举报

chuyee

中级会员

积分
352
地板
 楼主| 发表于 2019-2-15 09:38:44 | 只看该作者
The model prototxt is https://github.com/CMU-Perceptua ... oy_linevec.prototxt

I replaced the first 5 lines with below according to your suggestion.

name: "pose"
layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param {
    shape {
      dim: 1
      dim: 3
      dim: 224
      dim: 224
    }
  }
}
回复

使用道具 举报

慢慢的大米饭

新手上路

积分
43
5#
发表于 2019-2-15 15:57:53 | 只看该作者
chuyee 发表于 2019-2-15 09:38
The model prototxt is https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/models/po ...

请问解决了吗
回复

使用道具 举报

chuyee

中级会员

积分
352
6#
 楼主| 发表于 2019-2-15 16:42:39 | 只看该作者

No, please help!
回复

使用道具 举报

chuyee

中级会员

积分
352
7#
 楼主| 发表于 2019-2-15 16:47:50 | 只看该作者
This is the verbose output from 0.9.8 toolkit.

--> config model
done
--> Loading model
I Set caffe proto to caffe
I Load caffe model ./pose_modified.prototxt
I Parsing net parameters ...
D import clients finished
I Parsing layer parameters ...
D Convert layer data
D Convert layer conv1_1
D Convert layer relu1_1
D Convert layer conv1_2
D Convert layer relu1_2
D Convert layer pool1_stage1
D Convert layer conv2_1
D Convert layer relu2_1
D Convert layer conv2_2
D Convert layer relu2_2
D Convert layer pool2_stage1
D Convert layer conv3_1
D Convert layer relu3_1
D Convert layer conv3_2
D Convert layer relu3_2
D Convert layer conv3_3
D Convert layer relu3_3
D Convert layer conv3_4
D Convert layer relu3_4
D Convert layer pool3_stage1
D Convert layer conv4_1
D Convert layer relu4_1
D Convert layer conv4_2
D Convert layer relu4_2
D Convert layer conv4_3_CPM
D Convert layer relu4_3_CPM
D Convert layer conv4_4_CPM
D Convert layer relu4_4_CPM
D Convert layer conv5_1_CPM_L1
D Convert layer relu5_1_CPM_L1
D Convert layer conv5_1_CPM_L2
D Convert layer relu5_1_CPM_L2
D Convert layer conv5_2_CPM_L1
D Convert layer relu5_2_CPM_L1
D Convert layer conv5_2_CPM_L2
D Convert layer relu5_2_CPM_L2
D Convert layer conv5_3_CPM_L1
D Convert layer relu5_3_CPM_L1
D Convert layer conv5_3_CPM_L2
D Convert layer relu5_3_CPM_L2
D Convert layer conv5_4_CPM_L1
D Convert layer relu5_4_CPM_L1
D Convert layer conv5_4_CPM_L2
D Convert layer relu5_4_CPM_L2
D Convert layer conv5_5_CPM_L1
D Convert layer conv5_5_CPM_L2
D Convert layer concat_stage2
D Convert layer Mconv1_stage2_L1
D Convert layer Mrelu1_stage2_L1
D Convert layer Mconv1_stage2_L2
D Convert layer Mrelu1_stage2_L2
D Convert layer Mconv2_stage2_L1
D Convert layer Mrelu2_stage2_L1
D Convert layer Mconv2_stage2_L2
D Convert layer Mrelu2_stage2_L2
D Convert layer Mconv3_stage2_L1
D Convert layer Mrelu3_stage2_L1
D Convert layer Mconv3_stage2_L2
D Convert layer Mrelu3_stage2_L2
D Convert layer Mconv4_stage2_L1
D Convert layer Mrelu4_stage2_L1
D Convert layer Mconv4_stage2_L2
D Convert layer Mrelu4_stage2_L2
D Convert layer Mconv5_stage2_L1
D Convert layer Mrelu5_stage2_L1
D Convert layer Mconv5_stage2_L2
D Convert layer Mrelu5_stage2_L2
D Convert layer Mconv6_stage2_L1
D Convert layer Mrelu6_stage2_L1
D Convert layer Mconv6_stage2_L2
D Convert layer Mrelu6_stage2_L2
D Convert layer Mconv7_stage2_L1
D Convert layer Mconv7_stage2_L2
D Convert layer concat_stage3
D Convert layer Mconv1_stage3_L1
D Convert layer Mrelu1_stage3_L1
D Convert layer Mconv1_stage3_L2
D Convert layer Mrelu1_stage3_L2
D Convert layer Mconv2_stage3_L1
D Convert layer Mrelu2_stage3_L1
D Convert layer Mconv2_stage3_L2
D Convert layer Mrelu2_stage3_L2
D Convert layer Mconv3_stage3_L1
D Convert layer Mrelu3_stage3_L1
D Convert layer Mconv3_stage3_L2
D Convert layer Mrelu3_stage3_L2
D Convert layer Mconv4_stage3_L1
D Convert layer Mrelu4_stage3_L1
D Convert layer Mconv4_stage3_L2
D Convert layer Mrelu4_stage3_L2
D Convert layer Mconv5_stage3_L1
D Convert layer Mrelu5_stage3_L1
D Convert layer Mconv5_stage3_L2
D Convert layer Mrelu5_stage3_L2
D Convert layer Mconv6_stage3_L1
D Convert layer Mrelu6_stage3_L1
D Convert layer Mconv6_stage3_L2
D Convert layer Mrelu6_stage3_L2
D Convert layer Mconv7_stage3_L1
D Convert layer Mconv7_stage3_L2
D Convert layer concat_stage4
D Convert layer Mconv1_stage4_L1
D Convert layer Mrelu1_stage4_L1
D Convert layer Mconv1_stage4_L2
D Convert layer Mrelu1_stage4_L2
D Convert layer Mconv2_stage4_L1
D Convert layer Mrelu2_stage4_L1
D Convert layer Mconv2_stage4_L2
D Convert layer Mrelu2_stage4_L2
D Convert layer Mconv3_stage4_L1
D Convert layer Mrelu3_stage4_L1
D Convert layer Mconv3_stage4_L2
D Convert layer Mrelu3_stage4_L2
D Convert layer Mconv4_stage4_L1
D Convert layer Mrelu4_stage4_L1
D Convert layer Mconv4_stage4_L2
D Convert layer Mrelu4_stage4_L2
D Convert layer Mconv5_stage4_L1
D Convert layer Mrelu5_stage4_L1
D Convert layer Mconv5_stage4_L2
D Convert layer Mrelu5_stage4_L2
D Convert layer Mconv6_stage4_L1
D Convert layer Mrelu6_stage4_L1
D Convert layer Mconv6_stage4_L2
D Convert layer Mrelu6_stage4_L2
D Convert layer Mconv7_stage4_L1
D Convert layer Mconv7_stage4_L2
D Convert layer concat_stage5
D Convert layer Mconv1_stage5_L1
D Convert layer Mrelu1_stage5_L1
D Convert layer Mconv1_stage5_L2
D Convert layer Mrelu1_stage5_L2
D Convert layer Mconv2_stage5_L1
D Convert layer Mrelu2_stage5_L1
D Convert layer Mconv2_stage5_L2
D Convert layer Mrelu2_stage5_L2
D Convert layer Mconv3_stage5_L1
D Convert layer Mrelu3_stage5_L1
D Convert layer Mconv3_stage5_L2
D Convert layer Mrelu3_stage5_L2
D Convert layer Mconv4_stage5_L1
D Convert layer Mrelu4_stage5_L1
D Convert layer Mconv4_stage5_L2
D Convert layer Mrelu4_stage5_L2
D Convert layer Mconv5_stage5_L1
D Convert layer Mrelu5_stage5_L1
D Convert layer Mconv5_stage5_L2
D Convert layer Mrelu5_stage5_L2
D Convert layer Mconv6_stage5_L1
D Convert layer Mrelu6_stage5_L1
D Convert layer Mconv6_stage5_L2
D Convert layer Mrelu6_stage5_L2
D Convert layer Mconv7_stage5_L1
D Convert layer Mconv7_stage5_L2
D Convert layer concat_stage6
D Convert layer Mconv1_stage6_L1
D Convert layer Mrelu1_stage6_L1
D Convert layer Mconv1_stage6_L2
D Convert layer Mrelu1_stage6_L2
D Convert layer Mconv2_stage6_L1
D Convert layer Mrelu2_stage6_L1
D Convert layer Mconv2_stage6_L2
D Convert layer Mrelu2_stage6_L2
D Convert layer Mconv3_stage6_L1
D Convert layer Mrelu3_stage6_L1
D Convert layer Mconv3_stage6_L2
D Convert layer Mrelu3_stage6_L2
D Convert layer Mconv4_stage6_L1
D Convert layer Mrelu4_stage6_L1
D Convert layer Mconv4_stage6_L2
D Convert layer Mrelu4_stage6_L2
D Convert layer Mconv5_stage6_L1
D Convert layer Mrelu5_stage6_L1
D Convert layer Mconv5_stage6_L2
D Convert layer Mrelu5_stage6_L2
D Convert layer Mconv6_stage6_L1
D Convert layer Mrelu6_stage6_L1
D Convert layer Mconv6_stage6_L2
D Convert layer Mrelu6_stage6_L2
D Convert layer Mconv7_stage6_L1
D Convert layer Mconv7_stage6_L2
D Convert layer concat_stage7
I Parsing connections ...
D Connect: data_0,0 to output_182,0,
D Connect: conv1_1_1,0 to relu1_1_2,0
D Connect: relu1_1_2,0 to conv1_2_3,0
D Connect: conv1_2_3,0 to relu1_2_4,0
D Connect: relu1_2_4,0 to pool1_stage1_5,0
D Connect: pool1_stage1_5,0 to conv2_1_6,0
D Connect: conv2_1_6,0 to relu2_1_7,0
D Connect: relu2_1_7,0 to conv2_2_8,0
D Connect: conv2_2_8,0 to relu2_2_9,0
D Connect: relu2_2_9,0 to pool2_stage1_10,0
D Connect: pool2_stage1_10,0 to conv3_1_11,0
D Connect: conv3_1_11,0 to relu3_1_12,0
D Connect: relu3_1_12,0 to conv3_2_13,0
D Connect: conv3_2_13,0 to relu3_2_14,0
D Connect: relu3_2_14,0 to conv3_3_15,0
D Connect: conv3_3_15,0 to relu3_3_16,0
D Connect: relu3_3_16,0 to conv3_4_17,0
D Connect: conv3_4_17,0 to relu3_4_18,0
D Connect: relu3_4_18,0 to pool3_stage1_19,0
D Connect: pool3_stage1_19,0 to conv4_1_20,0
D Connect: conv4_1_20,0 to relu4_1_21,0
D Connect: relu4_1_21,0 to conv4_2_22,0
D Connect: conv4_2_22,0 to relu4_2_23,0
D Connect: relu4_2_23,0 to conv4_3_CPM_24,0
D Connect: conv4_3_CPM_24,0 to relu4_3_CPM_25,0
D Connect: relu4_3_CPM_25,0 to conv4_4_CPM_26,0
D Connect: conv4_4_CPM_26,0 to relu4_4_CPM_27,0
D Connect: relu4_4_CPM_27,0 to conv5_1_CPM_L1_28,0
D Connect: relu4_4_CPM_27,0 to conv5_1_CPM_L2_30,0
D Connect: relu4_4_CPM_27,0 to concat_stage2_46,2
D Connect: relu4_4_CPM_27,0 to concat_stage3_73,2
D Connect: relu4_4_CPM_27,0 to concat_stage4_100,2
D Connect: relu4_4_CPM_27,0 to concat_stage5_127,2
D Connect: relu4_4_CPM_27,0 to concat_stage6_154,2
D Connect: conv5_1_CPM_L1_28,0 to relu5_1_CPM_L1_29,0
D Connect: relu5_1_CPM_L1_29,0 to conv5_2_CPM_L1_32,0
D Connect: conv5_1_CPM_L2_30,0 to relu5_1_CPM_L2_31,0
D Connect: relu5_1_CPM_L2_31,0 to conv5_2_CPM_L2_34,0
D Connect: conv5_2_CPM_L1_32,0 to relu5_2_CPM_L1_33,0
D Connect: relu5_2_CPM_L1_33,0 to conv5_3_CPM_L1_36,0
D Connect: conv5_2_CPM_L2_34,0 to relu5_2_CPM_L2_35,0
D Connect: relu5_2_CPM_L2_35,0 to conv5_3_CPM_L2_38,0
D Connect: conv5_3_CPM_L1_36,0 to relu5_3_CPM_L1_37,0
D Connect: relu5_3_CPM_L1_37,0 to conv5_4_CPM_L1_40,0
D Connect: conv5_3_CPM_L2_38,0 to relu5_3_CPM_L2_39,0
D Connect: relu5_3_CPM_L2_39,0 to conv5_4_CPM_L2_42,0
D Connect: conv5_4_CPM_L1_40,0 to relu5_4_CPM_L1_41,0
D Connect: relu5_4_CPM_L1_41,0 to conv5_5_CPM_L1_44,0
D Connect: conv5_4_CPM_L2_42,0 to relu5_4_CPM_L2_43,0
D Connect: relu5_4_CPM_L2_43,0 to conv5_5_CPM_L2_45,0
D Connect: conv5_5_CPM_L1_44,0 to concat_stage2_46,0
D Connect: conv5_5_CPM_L2_45,0 to concat_stage2_46,1
D Connect: concat_stage2_46,0 to Mconv1_stage2_L1_47,0
D Connect: concat_stage2_46,0 to Mconv1_stage2_L2_49,0
D Connect: Mconv1_stage2_L1_47,0 to Mrelu1_stage2_L1_48,0
D Connect: Mrelu1_stage2_L1_48,0 to Mconv2_stage2_L1_51,0
D Connect: Mconv1_stage2_L2_49,0 to Mrelu1_stage2_L2_50,0
D Connect: Mrelu1_stage2_L2_50,0 to Mconv2_stage2_L2_53,0
D Connect: Mconv2_stage2_L1_51,0 to Mrelu2_stage2_L1_52,0
D Connect: Mrelu2_stage2_L1_52,0 to Mconv3_stage2_L1_55,0
D Connect: Mconv2_stage2_L2_53,0 to Mrelu2_stage2_L2_54,0
D Connect: Mrelu2_stage2_L2_54,0 to Mconv3_stage2_L2_57,0
D Connect: Mconv3_stage2_L1_55,0 to Mrelu3_stage2_L1_56,0
D Connect: Mrelu3_stage2_L1_56,0 to Mconv4_stage2_L1_59,0
D Connect: Mconv3_stage2_L2_57,0 to Mrelu3_stage2_L2_58,0
D Connect: Mrelu3_stage2_L2_58,0 to Mconv4_stage2_L2_61,0
D Connect: Mconv4_stage2_L1_59,0 to Mrelu4_stage2_L1_60,0
D Connect: Mrelu4_stage2_L1_60,0 to Mconv5_stage2_L1_63,0
D Connect: Mconv4_stage2_L2_61,0 to Mrelu4_stage2_L2_62,0
D Connect: Mrelu4_stage2_L2_62,0 to Mconv5_stage2_L2_65,0
D Connect: Mconv5_stage2_L1_63,0 to Mrelu5_stage2_L1_64,0
D Connect: Mrelu5_stage2_L1_64,0 to Mconv6_stage2_L1_67,0
D Connect: Mconv5_stage2_L2_65,0 to Mrelu5_stage2_L2_66,0
D Connect: Mrelu5_stage2_L2_66,0 to Mconv6_stage2_L2_69,0
D Connect: Mconv6_stage2_L1_67,0 to Mrelu6_stage2_L1_68,0
D Connect: Mrelu6_stage2_L1_68,0 to Mconv7_stage2_L1_71,0
D Connect: Mconv6_stage2_L2_69,0 to Mrelu6_stage2_L2_70,0
D Connect: Mrelu6_stage2_L2_70,0 to Mconv7_stage2_L2_72,0
D Connect: Mconv7_stage2_L1_71,0 to concat_stage3_73,0
D Connect: Mconv7_stage2_L2_72,0 to concat_stage3_73,1
D Connect: concat_stage3_73,0 to Mconv1_stage3_L1_74,0
D Connect: concat_stage3_73,0 to Mconv1_stage3_L2_76,0
D Connect: Mconv1_stage3_L1_74,0 to Mrelu1_stage3_L1_75,0
D Connect: Mrelu1_stage3_L1_75,0 to Mconv2_stage3_L1_78,0
D Connect: Mconv1_stage3_L2_76,0 to Mrelu1_stage3_L2_77,0
D Connect: Mrelu1_stage3_L2_77,0 to Mconv2_stage3_L2_80,0
D Connect: Mconv2_stage3_L1_78,0 to Mrelu2_stage3_L1_79,0
D Connect: Mrelu2_stage3_L1_79,0 to Mconv3_stage3_L1_82,0
D Connect: Mconv2_stage3_L2_80,0 to Mrelu2_stage3_L2_81,0
D Connect: Mrelu2_stage3_L2_81,0 to Mconv3_stage3_L2_84,0
D Connect: Mconv3_stage3_L1_82,0 to Mrelu3_stage3_L1_83,0
D Connect: Mrelu3_stage3_L1_83,0 to Mconv4_stage3_L1_86,0
D Connect: Mconv3_stage3_L2_84,0 to Mrelu3_stage3_L2_85,0
D Connect: Mrelu3_stage3_L2_85,0 to Mconv4_stage3_L2_88,0
D Connect: Mconv4_stage3_L1_86,0 to Mrelu4_stage3_L1_87,0
D Connect: Mrelu4_stage3_L1_87,0 to Mconv5_stage3_L1_90,0
D Connect: Mconv4_stage3_L2_88,0 to Mrelu4_stage3_L2_89,0
D Connect: Mrelu4_stage3_L2_89,0 to Mconv5_stage3_L2_92,0
D Connect: Mconv5_stage3_L1_90,0 to Mrelu5_stage3_L1_91,0
D Connect: Mrelu5_stage3_L1_91,0 to Mconv6_stage3_L1_94,0
D Connect: Mconv5_stage3_L2_92,0 to Mrelu5_stage3_L2_93,0
D Connect: Mrelu5_stage3_L2_93,0 to Mconv6_stage3_L2_96,0
D Connect: Mconv6_stage3_L1_94,0 to Mrelu6_stage3_L1_95,0
D Connect: Mrelu6_stage3_L1_95,0 to Mconv7_stage3_L1_98,0
D Connect: Mconv6_stage3_L2_96,0 to Mrelu6_stage3_L2_97,0
D Connect: Mrelu6_stage3_L2_97,0 to Mconv7_stage3_L2_99,0
D Connect: Mconv7_stage3_L1_98,0 to concat_stage4_100,0
D Connect: Mconv7_stage3_L2_99,0 to concat_stage4_100,1
D Connect: concat_stage4_100,0 to Mconv1_stage4_L1_101,0
D Connect: concat_stage4_100,0 to Mconv1_stage4_L2_103,0
D Connect: Mconv1_stage4_L1_101,0 to Mrelu1_stage4_L1_102,0
D Connect: Mrelu1_stage4_L1_102,0 to Mconv2_stage4_L1_105,0
D Connect: Mconv1_stage4_L2_103,0 to Mrelu1_stage4_L2_104,0
D Connect: Mrelu1_stage4_L2_104,0 to Mconv2_stage4_L2_107,0
D Connect: Mconv2_stage4_L1_105,0 to Mrelu2_stage4_L1_106,0
D Connect: Mrelu2_stage4_L1_106,0 to Mconv3_stage4_L1_109,0
D Connect: Mconv2_stage4_L2_107,0 to Mrelu2_stage4_L2_108,0
D Connect: Mrelu2_stage4_L2_108,0 to Mconv3_stage4_L2_111,0
D Connect: Mconv3_stage4_L1_109,0 to Mrelu3_stage4_L1_110,0
D Connect: Mrelu3_stage4_L1_110,0 to Mconv4_stage4_L1_113,0
D Connect: Mconv3_stage4_L2_111,0 to Mrelu3_stage4_L2_112,0
D Connect: Mrelu3_stage4_L2_112,0 to Mconv4_stage4_L2_115,0
D Connect: Mconv4_stage4_L1_113,0 to Mrelu4_stage4_L1_114,0
D Connect: Mrelu4_stage4_L1_114,0 to Mconv5_stage4_L1_117,0
D Connect: Mconv4_stage4_L2_115,0 to Mrelu4_stage4_L2_116,0
D Connect: Mrelu4_stage4_L2_116,0 to Mconv5_stage4_L2_119,0
D Connect: Mconv5_stage4_L1_117,0 to Mrelu5_stage4_L1_118,0
D Connect: Mrelu5_stage4_L1_118,0 to Mconv6_stage4_L1_121,0
D Connect: Mconv5_stage4_L2_119,0 to Mrelu5_stage4_L2_120,0
D Connect: Mrelu5_stage4_L2_120,0 to Mconv6_stage4_L2_123,0
D Connect: Mconv6_stage4_L1_121,0 to Mrelu6_stage4_L1_122,0
D Connect: Mrelu6_stage4_L1_122,0 to Mconv7_stage4_L1_125,0
D Connect: Mconv6_stage4_L2_123,0 to Mrelu6_stage4_L2_124,0
D Connect: Mrelu6_stage4_L2_124,0 to Mconv7_stage4_L2_126,0
D Connect: Mconv7_stage4_L1_125,0 to concat_stage5_127,0
D Connect: Mconv7_stage4_L2_126,0 to concat_stage5_127,1
D Connect: concat_stage5_127,0 to Mconv1_stage5_L1_128,0
D Connect: concat_stage5_127,0 to Mconv1_stage5_L2_130,0
D Connect: Mconv1_stage5_L1_128,0 to Mrelu1_stage5_L1_129,0
D Connect: Mrelu1_stage5_L1_129,0 to Mconv2_stage5_L1_132,0
D Connect: Mconv1_stage5_L2_130,0 to Mrelu1_stage5_L2_131,0
D Connect: Mrelu1_stage5_L2_131,0 to Mconv2_stage5_L2_134,0
D Connect: Mconv2_stage5_L1_132,0 to Mrelu2_stage5_L1_133,0
D Connect: Mrelu2_stage5_L1_133,0 to Mconv3_stage5_L1_136,0
D Connect: Mconv2_stage5_L2_134,0 to Mrelu2_stage5_L2_135,0
D Connect: Mrelu2_stage5_L2_135,0 to Mconv3_stage5_L2_138,0
D Connect: Mconv3_stage5_L1_136,0 to Mrelu3_stage5_L1_137,0
D Connect: Mrelu3_stage5_L1_137,0 to Mconv4_stage5_L1_140,0
D Connect: Mconv3_stage5_L2_138,0 to Mrelu3_stage5_L2_139,0
D Connect: Mrelu3_stage5_L2_139,0 to Mconv4_stage5_L2_142,0
D Connect: Mconv4_stage5_L1_140,0 to Mrelu4_stage5_L1_141,0
D Connect: Mrelu4_stage5_L1_141,0 to Mconv5_stage5_L1_144,0
D Connect: Mconv4_stage5_L2_142,0 to Mrelu4_stage5_L2_143,0
D Connect: Mrelu4_stage5_L2_143,0 to Mconv5_stage5_L2_146,0
D Connect: Mconv5_stage5_L1_144,0 to Mrelu5_stage5_L1_145,0
D Connect: Mrelu5_stage5_L1_145,0 to Mconv6_stage5_L1_148,0
D Connect: Mconv5_stage5_L2_146,0 to Mrelu5_stage5_L2_147,0
D Connect: Mrelu5_stage5_L2_147,0 to Mconv6_stage5_L2_150,0
D Connect: Mconv6_stage5_L1_148,0 to Mrelu6_stage5_L1_149,0
D Connect: Mrelu6_stage5_L1_149,0 to Mconv7_stage5_L1_152,0
D Connect: Mconv6_stage5_L2_150,0 to Mrelu6_stage5_L2_151,0
D Connect: Mrelu6_stage5_L2_151,0 to Mconv7_stage5_L2_153,0
D Connect: Mconv7_stage5_L1_152,0 to concat_stage6_154,0
D Connect: Mconv7_stage5_L2_153,0 to concat_stage6_154,1
D Connect: concat_stage6_154,0 to Mconv1_stage6_L1_155,0
D Connect: concat_stage6_154,0 to Mconv1_stage6_L2_157,0
D Connect: Mconv1_stage6_L1_155,0 to Mrelu1_stage6_L1_156,0
D Connect: Mrelu1_stage6_L1_156,0 to Mconv2_stage6_L1_159,0
D Connect: Mconv1_stage6_L2_157,0 to Mrelu1_stage6_L2_158,0
D Connect: Mrelu1_stage6_L2_158,0 to Mconv2_stage6_L2_161,0
D Connect: Mconv2_stage6_L1_159,0 to Mrelu2_stage6_L1_160,0
D Connect: Mrelu2_stage6_L1_160,0 to Mconv3_stage6_L1_163,0
D Connect: Mconv2_stage6_L2_161,0 to Mrelu2_stage6_L2_162,0
D Connect: Mrelu2_stage6_L2_162,0 to Mconv3_stage6_L2_165,0
D Connect: Mconv3_stage6_L1_163,0 to Mrelu3_stage6_L1_164,0
D Connect: Mrelu3_stage6_L1_164,0 to Mconv4_stage6_L1_167,0
D Connect: Mconv3_stage6_L2_165,0 to Mrelu3_stage6_L2_166,0
D Connect: Mrelu3_stage6_L2_166,0 to Mconv4_stage6_L2_169,0
D Connect: Mconv4_stage6_L1_167,0 to Mrelu4_stage6_L1_168,0
D Connect: Mrelu4_stage6_L1_168,0 to Mconv5_stage6_L1_171,0
D Connect: Mconv4_stage6_L2_169,0 to Mrelu4_stage6_L2_170,0
D Connect: Mrelu4_stage6_L2_170,0 to Mconv5_stage6_L2_173,0
D Connect: Mconv5_stage6_L1_171,0 to Mrelu5_stage6_L1_172,0
D Connect: Mrelu5_stage6_L1_172,0 to Mconv6_stage6_L1_175,0
D Connect: Mconv5_stage6_L2_173,0 to Mrelu5_stage6_L2_174,0
D Connect: Mrelu5_stage6_L2_174,0 to Mconv6_stage6_L2_177,0
D Connect: Mconv6_stage6_L1_175,0 to Mrelu6_stage6_L1_176,0
D Connect: Mrelu6_stage6_L1_176,0 to Mconv7_stage6_L1_179,0
D Connect: Mconv6_stage6_L2_177,0 to Mrelu6_stage6_L2_178,0
D Connect: Mrelu6_stage6_L2_178,0 to Mconv7_stage6_L2_180,0
D Connect: Mconv7_stage6_L1_179,0 to concat_stage7_181,1
D Connect: Mconv7_stage6_L2_180,0 to concat_stage7_181,0
D Connect: concat_stage7_181,0 to output_183,0,
I Load net complete.
D Process data_0 ...
D RKNN output shape(input): (0 224 224 3)
D Process output_182 ...
D RKNN output shape(output): (0 224 224 3)
D Process conv1_1_1 ...
E Catch exception when loading caffe model: ./pose_modified.prototxt!
T Traceback (most recent call last):
T   File "rknn/api/rknn_base.py", line 260, in rknn.api.rknn_base.RKNNBase.load_caffe
T   File "rknn/base/rknnlib/rknnnetbuilder.py", line 116, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build
T   File "rknn/base/rknnlib/rknnnetbuilder.py", line 134, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build_layer
T   File "rknn/base/rknnlib/rknnnetbuilder.py", line 134, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build_layer
T   File "rknn/base/rknnlib/rknnnetbuilder.py", line 134, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build_layer
T   [Previous line repeated 104 more times]
T   File "rknn/base/rknnlib/rknnnetbuilder.py", line 140, in rknn.base.rknnlib.rknnnetbuilder.rknnNetBuilder.build_layer
T   File "rknn/base/rknnlib/layer/rknnlayer.py", line 247, in rknn.base.rknnlib.layer.rknnlayer.rknnLayer.compute_shape
T   File "rknn/base/rknnlib/layer/convolution.py", line 65, in rknn.base.rknnlib.layer.convolution.Convolution.compute_out_shape
T AttributeError: 'NoneType' object has no attribute 'format'
Load mobilenet_v2 failed! Ret = -1
回复

使用道具 举报

慢慢的大米饭

新手上路

积分
43
8#
发表于 2019-2-16 10:22:44 | 只看该作者
chuyee 发表于 2019-2-15 16:47
This is the verbose output from 0.9.8 toolkit.

--> config model

我报的错跟你不一样我是有一个layer 未知 你可以看下我的帖子官方的人一点信都没 失望啊
回复

使用道具 举报

yhc

注册会员

积分
177
9#
发表于 2019-2-18 09:51:00 | 只看该作者
这个看layer都有支持的,caffemodel文件请问是哪里找到的呢
回复

使用道具 举报

chuyee

中级会员

积分
352
10#
 楼主| 发表于 2019-2-19 15:35:49 | 只看该作者
yhc 发表于 2019-2-18 09:51
这个看layer都有支持的,caffemodel文件请问是哪里找到的呢

http://posefs1.perception.cs.cmu ... r_440000.caffemodel

This is the standard OpenPose coco caffe pose model.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

产品中心 购买渠道 开源社区 Wiki教程 资料下载 关于Toybrick


快速回复 返回顶部 返回列表