|  | 
 
| 使用套件版本V1.6.0 转换 模型代码,使用darknet转rknn
 分别测试检测网络和残差网络
 检测网络使用yolov3 成功
 残差网络使用resnet50 失败
 失败原因日志如下:
 --> Loading model
 W Still not implement cost shape engine
 E Do not support the shortcut inputs: [0, 32, 32, 512] [0, 64, 64, 256]
 W ----------------Warning(1)----------------
 E Catch exception when loading darknet model: ./cifar/cifar.cfg!
 E Traceback (most recent call last):
 E   File "rknn/api/rknn_base.py", line 282, in rknn.api.rknn_base.RKNNBase.load_darknet
 E   File "rknn/base/RKNNlib/RK_nn.py", line 125, in rknn.base.RKNNlib.RK_nn.RKnn.load_darknet
 E   File "rknn/base/RKNNlib/converter/convert_darknet.py", line 669, in rknn.base.RKNNlib.converter.convert_darknet.Converter.converte
 E   File "rknn/base/RKNNlib/converter/convert_darknet.py", line 807, in rknn.base.RKNNlib.converter.convert_darknet.Converter.build_graph
 E   File "rknn/base/RKNNlib/converter/convert_darknet.py", line 616, in rknn.base.RKNNlib.converter.convert_darknet.NetGenerator.add_layer
 E   File "rknn/base/RKNNlib/converter/convert_darknet.py", line 508, in rknn.base.RKNNlib.converter.convert_darknet.ShortcutGenerator.gen
 E   File "rknn/api/rknn_log.py", line 312, in rknn.api.rknn_log.RKNNLog.e
 E ValueError: Do not support the shortcut inputs: [0, 32, 32, 512] [0, 64, 64, 256]
 Load weights failed!
 
 
 
 两个网络模型都使用darknet训练,分别在PC端验证通过
 yolov3 和 resnet50 都包含shortcut,发现yolov3 能够正常转换,但是resnet50不行,请问分类网络不支持shortcut网络层么,我看文档里面是支持的呀
 
 文档内容如下
 
 ## Darknet OPs supported by RKNN
 The list of Darknet OPs supported by RKNN Version 1.6.0 is as follows:
 
 | **Operators** |
 |---|
 |batchnormalize|
 |convolutional|
 |depthwise_convolutional|
 |pooling|
 |fullconnect|
 |leakyrelu|
 |concat|
 |add|
 |upsampling|
 |reorg|
 |noop|
 |route|
 |region|
 |shortcut|
 |multiply|
 |swish|
 |logistic|
 |mish|
 |softmax|
 
 
 
 | 
 |