|  | 
沙发
 
 楼主|
发表于 2022-5-21 11:45:11
|
只看该作者 
| """将RKNN模型部署在RV1126平台并运行测试,目前只是简单推理"""
 #环境:rv1126(Python3.7)
 import time
 import cv2
 import numpy as np
 from rknnlite.api import RKNNLite
 
 RKNN_MODEL = 'best1.rknn'
 IMG_PATH = 'bus.jpg'  # 修改推理图片
 
 QUANTIZE_ON = True
 
 BOX_THRESH = 0.25
 NMS_THRESH = 0.45
 IMG_SIZE = 640
 # CLASSES = ("1")
 # CLASSES = ("pedestrians","crowd","partially","ignore","riders")
 # CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
 #            "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
 #            "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
 #            "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
 #            "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
 #            "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop","mouse","remote ","keyboard ","cell phone","microwave ",
 #            "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
 CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')
 def sigmoid(x):
 return 1 / (1 + np.exp(-x))
 
 
 def xywh2xyxy(x):
 # Convert [x, y, w, h] to [x1, y1, x2, y2]
 y = np.copy(x)
 y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
 y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
 y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
 y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
 return y
 
 
 def process(input, mask, anchors):
 anchors = [anchors[i] for i in mask]
 grid_h, grid_w = map(int, input.shape[0:2])
 
 box_confidence = sigmoid(input[..., 4])
 box_confidence = np.expand_dims(box_confidence, axis=-1)
 
 box_class_probs = sigmoid(input[..., 5:])
 
 box_xy = sigmoid(input[..., :2]) * 2 - 0.5
 
 col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
 row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
 col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
 row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
 grid = np.concatenate((col, row), axis=-1)
 box_xy += grid
 box_xy *= int(IMG_SIZE / grid_h)
 
 box_wh = pow(sigmoid(input[..., 2:4]) * 2, 2)
 box_wh = box_wh * anchors
 
 box = np.concatenate((box_xy, box_wh), axis=-1)
 
 return box, box_confidence, box_class_probs
 
 
 def filter_boxes(boxes, box_confidences, box_class_probs):
 """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
 
 # Arguments
 boxes: ndarray, boxes of objects.
 box_confidences: ndarray, confidences of objects.
 box_class_probs: ndarray, class_probs of objects.
 
 # Returns
 boxes: ndarray, filtered boxes.
 classes: ndarray, classes for boxes.
 scores: ndarray, scores for boxes.
 """
 box_classes = np.argmax(box_class_probs, axis=-1)
 box_class_scores = np.max(box_class_probs, axis=-1)
 pos = np.where(box_confidences[..., 0] >= BOX_THRESH)
 
 boxes = boxes[pos]
 classes = box_classes[pos]
 scores = box_class_scores[pos]
 
 return boxes, classes, scores
 
 
 def nms_boxes(boxes, scores):
 """Suppress non-maximal boxes.
 
 # Arguments
 boxes: ndarray, boxes of objects.
 scores: ndarray, scores of objects.
 
 # Returns
 keep: ndarray, index of effective boxes.
 """
 x = boxes[:, 0]
 y = boxes[:, 1]
 w = boxes[:, 2] - boxes[:, 0]
 h = boxes[:, 3] - boxes[:, 1]
 
 areas = w * h
 order = scores.argsort()[::-1]
 
 keep = []
 while order.size > 0:
 i = order[0]
 keep.append(i)
 
 xx1 = np.maximum(x[i], x[order[1:]])
 yy1 = np.maximum(y[i], y[order[1:]])
 xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
 yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
 
 w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
 h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
 inter = w1 * h1
 
 ovr = inter / (areas[i] + areas[order[1:]] - inter)
 inds = np.where(ovr <= NMS_THRESH)[0]
 order = order[inds + 1]
 keep = np.array(keep)
 return keep
 
 
 def yolov5_post_process(input_data):
 masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
 anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
 [59, 119], [116, 90], [156, 198], [373, 326]]
 
 boxes, classes, scores = [], [], []
 for input, mask in zip(input_data, masks):
 b, c, s = process(input, mask, anchors)
 b, c, s = filter_boxes(b, c, s)
 boxes.append(b)
 classes.append(c)
 scores.append(s)
 
 boxes = np.concatenate(boxes)
 boxes = xywh2xyxy(boxes)
 classes = np.concatenate(classes)
 scores = np.concatenate(scores)
 
 nboxes, nclasses, nscores = [], [], []
 for c in set(classes):
 inds = np.where(classes == c)
 b = boxes[inds]
 c = classes[inds]
 s = scores[inds]
 
 keep = nms_boxes(b, s)
 
 nboxes.append(b[keep])
 nclasses.append(c[keep])
 nscores.append(s[keep])
 
 if not nclasses and not nscores:
 return None, None, None
 
 boxes = np.concatenate(nboxes)
 classes = np.concatenate(nclasses)
 scores = np.concatenate(nscores)
 
 return boxes, classes, scores
 
 
 def draw(image, boxes, scores, classes):
 """Draw the boxes on the image.
 
 # Argument:
 image: original image.
 boxes: ndarray, boxes of objects.
 classes: ndarray, classes of objects.
 scores: ndarray, scores of objects.
 all_classes: all classes name.
 """
 for box, score, cl in zip(boxes, scores, classes):
 top, left, right, bottom = box
 print('class: {}, score: {}'.format(CLASSES[cl], score))
 print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
 
 top = int(top)
 left = int(left)
 right = int(right)
 bottom = int(bottom)
 
 cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
 cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
 (top, left - 6),
 cv2.FONT_HERSHEY_SIMPLEX,
 0.6, (0, 0, 255), 2)
 
 
 def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
 # Resize and pad image while meeting stride-multiple constraints
 shape = im.shape[:2]  # current shape [height, width]
 if isinstance(new_shape, int):
 new_shape = (new_shape, new_shape)
 
 # Scale ratio (new / old)
 r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
 
 # Compute padding
 ratio = r, r  # width, height ratios
 new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
 dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
 
 dw /= 2  # divide padding into 2 sides
 dh /= 2
 
 if shape[::-1] != new_unpad:  # resize
 im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
 top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
 left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
 im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
 return im, ratio, (dw, dh)
 
 
 def load_model():
 """载入model"""
 
 # Create RKNN object
 rknn_lite = RKNNLite()
 
 print('--> list devices:')
 rknn_lite.list_devices()
 print('done')
 
 print('--> query support target platform')
 rknn_lite.list_support_target_platform(rknn_model=RKNN_MODEL)
 print('done')
 
 print('--> Load RKNN model')
 ret = rknn_lite.load_rknn(RKNN_MODEL)
 if ret != 0:
 print('Load RKNN model failed')
 exit(ret)
 print('done')
 
 # init runtime environment
 print('--> Init runtime environment')
 # 指定平台
 # ret = rknn_lite.init_runtime(target='rv1126')
 ret = rknn_lite.init_runtime()
 print(ret)
 if ret != 0:
 print('Init runtime environment failed')
 exit(ret)
 print('done')
 return rknn_lite
 
 
 if __name__ == '__main__':
 
 # rknn导入
 rknn = load_model()
 
 # Set inputs
 img = cv2.imread(IMG_PATH)  #  改变输入,可以获取摄像头数据源
 # img = cv2.resize(img, (640,640))
 img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 
 # print("--> get sdk version:")
 # sdk_version = rknn_lite.get_sdk_version()
 # print(sdk_version)
 # print("done")
 
 # Inference
 print('--> Running model')
 _force_builtin_perm = False
 t0 = time.time()
 outputs = rknn.inference(inputs=[img], inputs_pass_through=[0 if not _force_builtin_perm else 1])
 print("inference time:\t", time.time() - t0)
 # post process
 input0_data = outputs[0]
 input1_data = outputs[1]
 input2_data = outputs[2]
 
 input0_data = input0_data.reshape([3, -1] + list(input0_data.shape[-2:]))
 input1_data = input1_data.reshape([3, -1] + list(input1_data.shape[-2:]))
 input2_data = input2_data.reshape([3, -1] + list(input2_data.shape[-2:]))
 
 input_data = list()
 input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
 input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
 input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
 
 boxes, classes, scores = yolov5_post_process(input_data)
 
 img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
 if boxes is not None:
 draw(img_1, boxes, scores, classes)
 
 cv2.imwrite('result.jpg', img_1)
 # cv2.imshow("post process result", img_1)
 # cv2.waitKeyEx(0)
 
 rknn.release()
 
 | 
 |