本帖最后由 EASY-EAI 于 2023-1-11 18:21 编辑
1. Yolov5简介 YOLOv5 模型是 Ultralytics 公司于 2020 年 6 月 9 日公开发布的。YOLOv5 模型是基于 YOLOv3 模型基础上改进而来的,有 YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x 四个模型。YOLOv5 相比YOLOv4 而言,在检测平均精度降低不多的基础上,具有均值权重文件更小,训练时间和推理速度更短的特点。YOLOv5 的网络结构分为输入端BackboneNeck、Head 四个部分。 本教程针对目标检测算法yolov5的训练和部署到EASY-EAI-Nano(RV1126)进行说明,而数据标注方法可以参考我们往期的文章《Labelimg的安装与使用》。 以下为YOLOv5训练部署的大致流程: 2. 准备数据集2.1 数据集下载
本教程以口罩检测为例,数据集的百度网盘下载链接为:
解压完成后得到以下三个文件:
2.2 生成路径列表
在数据集目录下执行脚本list_dataset_file.py: - python list_dataset_file.py
执行现象如下图所示: 得到训练样本列表文件train.txt和验证样本列表文件valid.txt,如下图所示:
3. 下载yolov5训练源码
通过git工具,在PC端克隆远程仓库(注:此处可能会因网络原因造成卡顿,请耐心等待): - git clone https://github.com/EASY-EAI/yolov5.git
得到下图所示目录: 4. 训练算法模型
切换到yolov5的工作目录,接下来以训练一个口罩检测模型为例进行说明。需要修改data/mask.yaml里面的train.txt和valid.txt的路径。
执行下列脚本训练算法模型: - python train.py --data mask.yaml --cfg yolov5s.yaml --weights "" --batch-size 64
开始训练模型,如下图所示:
关于算法精度结果可以查看./runs/train/results.csv获得。 5. 在PC端进行模型预测
训练完毕后,在./runs/train/exp/weights/best.pt生成通过验证集测试的最好结果的模型。同时可以执行模型预测,初步评估模型的效果: 6. pt模型转换为onnx模型
算法部署到EASY-EAI-Nano需要转换为RKNN模型,而转换RKNN之前可以把模型先转换为ONNX模型,同时会生成best.anchors.txt: - python export.py --include onnx --rknpu RV1126 --weights ./runs/train/exp/weights/best.pt
生成如下图所示: 7. 转换为rknn模型环境搭建
onnx模型需要转换为rknn模型才能在EASY-EAI-Nano运行,所以需要先搭建rknn-toolkit模型转换工具的环境。当然tensorflow、tensroflow lite、caffe、darknet等也是通过类似的方法进行模型转换,只是本教程onnx为例。 7.1 概述
模型转换环境搭建流程如下所示: 7.2 下载模型转换工具
为了保证模型转换工具顺利运行,请下载网盘里”AI算法开发/RKNN-Toolkit模型转换工具/rknn-toolkit-v1.7.1/docker/rknn-toolkit-1.7.1-docker.tar.gz”。
7.3 把工具移到ubuntu18.04
把下载完成的docker镜像移到我司的虚拟机ubuntu18.04的rknn-toolkit目录,如下图所 7.4 运行模型转换工具环境7.4.1 打开终端
在该目录打开终端: 7.4.2 加载docker镜像
执行以下指令加载模型转换工具docker镜像: - docker load --input /home/developer/rknn-toolkit/rknn-toolkit-1.7.1-docker.tar.gz
7.4.3 进入镜像bash环境
执行以下指令进入镜像bash环境: - docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-toolkit:1.7.1 /bin/bash
现象如下图所示: 7.4.4 测试环境
输入“python”加载python相关库,尝试加载rknn库,如下图环境测试成功: 至此,模型转换工具环境搭建完成。 8. rknn模型转换流程介绍
EASY EAI Nano支持.rknn后缀的模型的评估及运行,对于常见的tensorflow、tensroflow lite、caffe、darknet、onnx和Pytorch模型都可以通过我们提供的 toolkit 工具将其转换至 rknn 模型,而对于其他框架训练出来的模型,也可以先将其转至 onnx 模型再转换为 rknn 模型。 模型转换操作流程入下图所示: 8.1 模型转换Demo下载
把model_convert.tar.bz2解压到虚拟机,如下图所示: 8.2 进入模型转换工具docker环境
执行以下指令把工作区域映射进docker镜像,其中/home/developer/rknn-toolkit/model_convert为工作区域,/test为映射到docker镜像,/dev/bus/usb:/dev/bus/usb为映射usb到docker镜像: - docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v /home/developer/rknn-toolkit/model_convert:/test rknn-toolkit:1.7.1 /bin/bash
执行成功如下图所示: 8.3 模型转换操作说明8.3.1 模型转换Demo目录结构
模型转换测试Demo由mask_object_detect和quant_dataset组成。coco_object_detect存放软件脚本,quant_dataset存放量化模型所需的数据。如下图所示: mask_object_detect文件夹存放以下内容,如下图所示:
8.3.2 生成量化图片列表
在docker环境切换到模型转换工作目录: - cd /test/mask_object_detect/
如下图所示: 执行gen_list.py生成量化图片列表:
命令行现象如下图所示: 生成“量化图片列表”如下文件夹所示: 8.3.3 onnx模型转换为rknn模型
rknn_convert.py脚本默认进行int8量化操作,脚本代码清单如下所示: - import os
- import urllib
- import traceback
- import time
- import sys
- import numpy as np
- import cv2
- from rknn.api import RKNN
- ONNX_MODEL = 'best.onnx'
- RKNN_MODEL = './yolov5_mask_rv1126.rknn'
- DATASET = './pic_path.txt'
- QUANTIZE_ON = True
- if __name__ == '__main__':
- # Create RKNN object
- rknn = RKNN(verbose=True)
- if not os.path.exists(ONNX_MODEL):
- print('model not exist')
- exit(-1)
- # pre-process config
- print('--> Config model')
- rknn.config(reorder_channel='0 1 2',
- mean_values=[[0, 0, 0]],
- std_values=[[255, 255, 255]],
- optimization_level=3,
- target_platform = 'rv1126',
- output_optimize=1,
- quantize_input_node=QUANTIZE_ON)
- print('done')
- # Load ONNX model
- print('--> Loading model')
- ret = rknn.load_onnx(model=ONNX_MODEL)
- if ret != 0:
- print('Load yolov5 failed!')
- exit(ret)
- print('done')
- # Build model
- print('--> Building model')
- ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
- if ret != 0:
- print('Build yolov5 failed!')
- exit(ret)
- print('done')
- # Export RKNN model
- print('--> Export RKNN model')
- ret = rknn.export_rknn(RKNN_MODEL)
- if ret != 0:
- print('Export yolov5rknn failed!')
- exit(ret)
- print('done')
把onnx模型best.onnx放到mask_object_detect目录,并执行rknn_convert.py脚本进行模型转换:
生成模型如下图所示,此模型可以在rknn环境和EASY EAINano环境运行: 8.3.4 运行rknn模型
用yolov5_mask_test.py脚本在PC端的环境下可以运行rknn的模型,如下图所示: yolov5_mask_test.py脚本程序清单如下所示: - import os
- import urllib
- import traceback
- import time
- import sys
- import numpy as np
- import cv2
- import random
- from rknn.api import RKNN
- RKNN_MODEL = 'yolov5_mask_rv1126.rknn'
- IMG_PATH = './test.jpg'
- DATASET = './dataset.txt'
- BOX_THRESH = 0.25
- NMS_THRESH = 0.6
- IMG_SIZE = 640
- CLASSES = ("head", "mask")
- def sigmoid(x):
- return 1 / (1 + np.exp(-x))
- def xywh2xyxy(x):
- # Convert [x, y, w, h] to [x1, y1, x2, y2]
- y = np.copy(x)
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
- return y
- def process(input, mask, anchors):
- anchors = [anchors[i] for i in mask]
- grid_h, grid_w = map(int, input.shape[0:2])
- box_confidence = sigmoid(input[..., 4])
- box_confidence = np.expand_dims(box_confidence, axis=-1)
- box_class_probs = sigmoid(input[..., 5:])
- box_xy = sigmoid(input[..., :2])*2 - 0.5
- col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
- row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
- col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- grid = np.concatenate((col, row), axis=-1)
- box_xy += grid
- box_xy *= int(IMG_SIZE/grid_h)
- box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
- box_wh = box_wh * anchors
- box = np.concatenate((box_xy, box_wh), axis=-1)
- return box, box_confidence, box_class_probs
- def filter_boxes(boxes, box_confidences, box_class_probs):
- """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
- # Arguments
- boxes: ndarray, boxes of objects.
- box_confidences: ndarray, confidences of objects.
- box_class_probs: ndarray, class_probs of objects.
- # Returns
- boxes: ndarray, filtered boxes.
- classes: ndarray, classes for boxes.
- scores: ndarray, scores for boxes.
- """
- box_scores = box_confidences * box_class_probs
- box_classes = np.argmax(box_class_probs, axis=-1)
- box_class_scores = np.max(box_scores, axis=-1)
- pos = np.where(box_confidences[...,0] >= BOX_THRESH)
- boxes = boxes[pos]
- classes = box_classes[pos]
- scores = box_class_scores[pos]
- return boxes, classes, scores
- def nms_boxes(boxes, scores):
- """Suppress non-maximal boxes.
- # Arguments
- boxes: ndarray, boxes of objects.
- scores: ndarray, scores of objects.
- # Returns
- keep: ndarray, index of effective boxes.
- """
- x = boxes[:, 0]
- y = boxes[:, 1]
- w = boxes[:, 2] - boxes[:, 0]
- h = boxes[:, 3] - boxes[:, 1]
- areas = w * h
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x[i], x[order[1:]])
- yy1 = np.maximum(y[i], y[order[1:]])
- xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
- yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
- w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
- h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
- inter = w1 * h1
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= NMS_THRESH)[0]
- order = order[inds + 1]
- keep = np.array(keep)
- return keep
- def yolov5_post_process(input_data):
- masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- [59, 119], [116, 90], [156, 198], [373, 326]]
- boxes, classes, scores = [], [], []
- for input,mask in zip(input_data, masks):
- b, c, s = process(input, mask, anchors)
- b, c, s = filter_boxes(b, c, s)
- boxes.append(b)
- classes.append(c)
- scores.append(s)
- boxes = np.concatenate(boxes)
- boxes = xywh2xyxy(boxes)
- classes = np.concatenate(classes)
- scores = np.concatenate(scores)
- nboxes, nclasses, nscores = [], [], []
- for c in set(classes):
- inds = np.where(classes == c)
- b = boxes[inds]
- c = classes[inds]
- s = scores[inds]
- keep = nms_boxes(b, s)
- nboxes.append(b[keep])
- nclasses.append(c[keep])
- nscores.append(s[keep])
- if not nclasses and not nscores:
- return None, None, None
- boxes = np.concatenate(nboxes)
- classes = np.concatenate(nclasses)
- scores = np.concatenate(nscores)
- return boxes, classes, scores
- def scale_coords(x1, y1, x2, y2, dst_width, dst_height):
-
- dst_top, dst_left, dst_right, dst_bottom = 0, 0, 0, 0
- gain = 0
- if dst_width > dst_height:
- image_max_len = dst_width
- gain = IMG_SIZE / image_max_len
- resized_height = dst_height * gain
- height_pading = (IMG_SIZE - resized_height)/2
- print("height_pading:", height_pading)
- y1 = (y1 - height_pading)
- y2 = (y2 - height_pading)
-
- print("gain:", gain)
- dst_x1 = int(x1 / gain)
- dst_y1 = int(y1 / gain)
- dst_x2 = int(x2 / gain)
- dst_y2 = int(y2 / gain)
- return dst_x1, dst_y1, dst_x2, dst_y2
- def plot_one_box(x, img, color=None, label=None, line_thickness=None):
- tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
- color = color or [random.randint(0, 255) for _ in range(3)]
- c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
- cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
- if label:
- tf = max(tl - 1, 1) # font thickness
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
- c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
- cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
- cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
- def draw(image, boxes, scores, classes):
- """Draw the boxes on the image.
- # Argument:
- image: original image.
- boxes: ndarray, boxes of objects.
- classes: ndarray, classes of objects.
- scores: ndarray, scores of objects.
- all_classes: all classes name.
- """
- for box, score, cl in zip(boxes, scores, classes):
- x1, y1, x2, y2 = box
- print('class: {}, score: {}'.format(CLASSES[cl], score))
- print('box coordinate x1,y1,x2,y2: [{}, {}, {}, {}]'.format(x1, y1, x2, y2))
- x1 = int(x1)
- y1 = int(y1)
- x2 = int(x2)
- y2 = int(y2)
- dst_x1, dst_y1, dst_x2, dst_y2 = scale_coords(x1, y1, x2, y2, image.shape[1], image.shape[0])
- #print("img.cols:", image.cols)
- plot_one_box((dst_x1, dst_y1, dst_x2, dst_y2), image, label='{0} {1:.2f}'.format(CLASSES[cl], score))
-
- '''
- cv2.rectangle(image, (dst_x1, dst_y1), (dst_x2, dst_y2), (255, 0, 0), 2)
- cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
- (dst_x1, dst_y1 - 6),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.6, (0, 0, 255), 2)
- '''
- def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
- # Resize and pad image while meeting stride-multiple constraints
- shape = im.shape[:2] # current shape [height, width]
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- # Compute padding
- ratio = r, r # width, height ratios
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
- dw /= 2 # divide padding into 2 sides
- dh /= 2
- if shape[::-1] != new_unpad: # resize
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
- return im, ratio, (dw, dh)
- if __name__ == '__main__':
- # Create RKNN object
- rknn = RKNN(verbose=True)
- print('--> Loading model')
- ret = rknn.load_rknn(RKNN_MODEL)
- if ret != 0:
- print('load rknn model failed')
- exit(ret)
- print('done')
- # init runtime environment
- print('--> Init runtime environment')
- ret = rknn.init_runtime()
- # ret = rknn.init_runtime('rv1126', device_id='1126')
- if ret != 0:
- print('Init runtime environment failed')
- exit(ret)
- print('done')
- # Set inputs
- img = cv2.imread(IMG_PATH)
- letter_img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
- letter_img = cv2.cvtColor(letter_img, cv2.COLOR_BGR2RGB)
- # Inference
- print('--> Running model')
- outputs = rknn.inference(inputs=[letter_img])
- print('--> inference done')
- # post process
- input0_data = outputs[0]
- input1_data = outputs[1]
- input2_data = outputs[2]
- input0_data = input0_data.reshape([3,-1]+list(input0_data.shape[-2:]))
- input1_data = input1_data.reshape([3,-1]+list(input1_data.shape[-2:]))
- input2_data = input2_data.reshape([3,-1]+list(input2_data.shape[-2:]))
- input_data = list()
- input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
- input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
- input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
- print('--> transpose done')
- boxes, classes, scores = yolov5_post_process(input_data)
- print('--> get result done')
- #img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
- if boxes is not None:
- draw(img, boxes, scores, classes)
- cv2.imwrite('./result.jpg', img)
- #cv2.imshow("post process result", img_1)
- #cv2.waitKeyEx(0)
- rknn.release()
执行后得到result.jpg如下图所示: 8.3.5 模型预编译
由于rknn模型用NPU API在EASY EAI Nano加载的时候启动速度会好慢,在评估完模型精度没问题的情况下,建议进行模型预编译。预编译的时候需要通过EASY EAI Nano主板的环境,所以请务必接上adb口与ubuntu保证稳定连接。 板子端接线如下图所示,拨码开关需要是adb: 虚拟机要保证接上adb设备: 由于在虚拟机里ubuntu环境与docker环境对adb设备资源是竞争关系,所以需要关掉ubuntu环境下的adb服务,且在docker里面通过apt-get安装adb软件包。以下指令在ubuntu环境与docker环境里各自执行: 在docker环境里执行adbdevices,现象如下图所示则设备连接成功: 运行precompile_rknn.py脚本把模型执行预编译: - python precompile_rknn.py
执行效果如下图所示,生成预编译模型yolov5_mask_rv1126_pre.rknn: 至此预编译部署完成,模型转换步骤已全部完成。生成如下预编译后的int8量化模型: 9. 模型部署示例
9.1 模型部署示例介绍
本小节展示yolov5模型的在EASY EAINano的部署过程,该模型仅经过简单训练供示例使用,不保证模型精度。 9.2 准备工作
9.2.1 硬件准备
EASY EAI Nano开发板,microUSB数据线,带linux操作系统的电脑。需保证EASY EAI Nano与linux系统保持adb连接。 9.2.2 交叉编译环境准备
9.2.3 文件下载
下载yolov5 C Demo示例文件。 下载解压后如下图所示: 9.3 在EASY EAI Nano运行yolov5 demo
9.3.1 解压yolov5 demo
下载程序包移至ubuntu环境后,执行以下指令解压: - tar -xvf yolov5_detect_C_demo.tar.bz2
9.3.2 编译yolov5 demo
执行以下脚本编译demo:
编译成功后如下图所示: 9.3.3 执行yolov5 demo
执行以下指令把可执行程序推送到开发板端: - adb push yolov5_detect_demo_release/ /userdata
登录到开发板执行程序: - adb shell
- cd /userdata/yolov5_detect_demo_release/
- ./yolov5_detect_demo
执行结果如下图所示,算法执行时间为50ms: 取回测试图片: - adb pull /userdata/yolov5_detect_demo_release/result.jpg .
测试结果如下图所示: 10. 基于摄像头的AI Demo
10.1 摄像头Demo介绍
本小节展示yolov5模型的在EASY EAI Nano执行摄像头Demo的过程,该模型仅经过简单训练供示例使用,不保证模型精度。 10.2 准备工作
10.2.1 硬件准备
EASY-EAI-Nano人工智能开发套件(包括:EASY EAI Nano开发板,双目摄像头,5寸高清屏幕,microUSB数据线),带linux操作系统的电脑,。需保证EASY EAI Nano与linux系统保持adb连接。 10.2.2 交叉编译环境准备
10.2.3 文件下载
下载解压后如下图所示: 10.3 在EASY EAI Nano运行yolov5 demo
10.3.1 解压yolov5 camera demo
下载程序包移至ubuntu环境后,执行以下指令解压: - tar -xvf yolov5_detect_camera_demo.tar.tar.bz2
10.3.2 编译yolov5 camera demo
执行以下脚本编译demo:
编译成功后如下图所示: 10.3.3 执行yolov5 camera demo
执行以下指令把可执行程序推送到开发板端: - adb push yolov5_detect_camera_demo_release/ /userdata
登录到开发板执行程序: - adb shell
- cd /userdata/yolov5_detect_camera_demo_release/
- ./yolov5_detect_camera_demo
测试结果如下图所示: 11. 资料下载
12. 硬件使用 本教程使用的是EASYEAI nano(RV1126)开发板 EASY EAI Nano是基于瑞芯微RV1126 处理器设计,具有四核CPU@1.5GHz与NPU@2Tops AI边缘计算能力。实现AI运算的功耗不及所需GPU的10%。配套AI算法工具完善,支持Tensorflow、Pytorch、Caffe、MxNet、DarkNet、ONNX等主流AI框架直接转换和部署。有丰富的软硬件开发资料,而且外设资源丰富,接口齐全,还有丰富的功能配件可供选择。集成有以太网、Wi-Fi 等通信外设。摄像头、显示屏(带电容触摸)、喇叭、麦克风等交互外设。2 路 USB Host 接口、1 路 USB Device 调试接口。集成协议串口、TF 卡、IO 拓展接口(兼容树莓派/Jetson nano拓展接口)等通用外设。内置人脸识别、安全帽监测、人体骨骼点识别、火焰检测、车辆检测等各类 AI 算法,并提供完整的Linux 开发包供客户二次开发。
本篇文章到这里就结束啦,关于我们更多请前往官网了解 后续更多教程关注我们,不定时更新各种新品及活动 |