|  | 
 
| 模型转换代码参考官方提供的yolov3_demo,转换代码如下 
 from PIL import Image
 import numpy as np
 #from matplotlib import pyplot as plt
 
 import re
 import math
 import random
 
 from rknn.api import RKNN
 
 
 if __name__ == '__main__':
 
 # Create RKNN object
 rknn = RKNN()
 
 # Load tensorflow model
 print('--> Loading model')
 rknn.load_darknet(model='./yolov4-custom.cfg', weight="./yolov4-custom_best.weights")
 
 print('done')
 
 rknn.config(channel_mean_value='0 0 0 255', reorder_channel='0 1 2', batch_size=1)
 
 # Build model
 print('--> Building model')
 rknn.build(do_quantization=True, dataset='./dataset_608x608.txt', pre_compile=True)
 print('done')
 
 rknn.export_rknn('./yolov4_person_hand_1_608x608.rknn')
 
 exit(0)
 
 转换后在板子上推理时间竟然要2.3s,yolov4原模型是250M,用darknet训练,转换后是63M。大家遇到过这样的问题吗?
 
 
 
 | 
 |