|
你好,我自己的caffe模型转换好后,用py测试结果正确。
用咱们提供的rknn_ssd.cpp代码测试咱们自己的mobilenet ssd结果也是正常的,但是:
(1)修改rknn_ssd.cpp里面的类别个数,以及模型路径等去测试咱们提供的caffe文件夹中的vgg ssd时候不会显示任何结果;
(2)修改rknn_ssd.cpp里面的类别个数,以及模型路径等却测试我自己的mobilenet ssd结果也完全不搭边。
(3)我看咱们这个rknn_ssd.cpp代码是TensorFlow文件夹中的mobilenet ssd的测试demo,是否caffe的模型不能用?
(4)可以的话,麻烦可否一下以下几个宏的具体含义。
#define NUM_RESULTS 2183 prior box个数/4?
#define NUM_CLASSES 21 类别个数
#define Y_SCALE 10.0f
#define X_SCALE 10.0f
#define H_SCALE 5.0f
#define W_SCALE 5.0f
代码如下:
- #include <stdio.h>
- #include <stdint.h>
- #include <stdlib.h>
- #include <fstream>
- #include <iostream>
- #include <sys/time.h>
- #include "rknn_api.h"
- #include "opencv2/core/core.hpp"
- #include "opencv2/imgproc/imgproc.hpp"
- #include "opencv2/highgui/highgui.hpp"
- #include <time.h>
- using namespace std;
- using namespace cv;
- #define NUM_RESULTS 2183
- #define NUM_CLASSES 21
- #define Y_SCALE 10.0f
- #define X_SCALE 10.0f
- #define H_SCALE 5.0f
- #define W_SCALE 5.0f
- Scalar colorArray[10] = {
- Scalar(139, 0, 0, 255),
- Scalar(139, 0, 139, 255),
- Scalar( 0, 0, 139, 255),
- Scalar( 0, 100, 0, 255),
- Scalar(139, 139, 0, 255),
- Scalar(209, 206, 0, 255),
- Scalar( 0, 127, 255, 255),
- Scalar(139, 61, 72, 255),
- Scalar( 0, 255, 0, 255),
- Scalar(255, 0, 0, 255),
- };
- float MIN_SCORE = 0.7f;
- float NMS_THRESHOLD = 0.45f;
- int loadLabelName(string locationFilename, string* labels) {
- ifstream fin(locationFilename);
- string line;
- int lineNum = 0;
- while(getline(fin, line))
- {
- labels[lineNum] = line;
- lineNum++;
- }
- return 0;
- }
- int loadCoderOptions(string locationFilename, float (*boxPriors)[NUM_RESULTS])
- {
- const char *d = ", ";
- ifstream fin(locationFilename);
- string line;
- int lineNum = 0;
- while(getline(fin, line))
- {
- char *line_str = const_cast<char *>(line.c_str());
- char *p;
- p = strtok(line_str, d);
- int priorIndex = 0;
- while (p) {
- float number = static_cast<float>(atof(p));
- boxPriors[lineNum][priorIndex++] = number;
- p=strtok(nullptr, d);
- }
- if (priorIndex != NUM_RESULTS) {
- return -1;
- }
- lineNum++;
- }
- return 0;
- }
- float CalculateOverlap(float xmin0, float ymin0, float xmax0, float ymax0, float xmin1, float ymin1, float xmax1, float ymax1) {
- float w = max(0.f, min(xmax0, xmax1) - max(xmin0, xmin1));
- float h = max(0.f, min(ymax0, ymax1) - max(ymin0, ymin1));
- float i = w * h;
- float u = (xmax0 - xmin0) * (ymax0 - ymin0) + (xmax1 - xmin1) * (ymax1 - ymin1) - i;
- return u <= 0.f ? 0.f : (i / u);
- }
- float expit(float x) {
- return (float) (1.0 / (1.0 + exp(-x)));
- }
- void decodeCenterSizeBoxes(float* predictions, float (*boxPriors)[NUM_RESULTS]) {
- for (int i = 0; i < NUM_RESULTS; ++i) {
- float ycenter = predictions[i*4+0] / Y_SCALE * boxPriors[2][i] + boxPriors[0][i];
- float xcenter = predictions[i*4+1] / X_SCALE * boxPriors[3][i] + boxPriors[1][i];
- float h = (float) exp(predictions[i*4 + 2] / H_SCALE) * boxPriors[2][i];
- float w = (float) exp(predictions[i*4 + 3] / W_SCALE) * boxPriors[3][i];
- float ymin = ycenter - h / 2.0f;
- float xmin = xcenter - w / 2.0f;
- float ymax = ycenter + h / 2.0f;
- float xmax = xcenter + w / 2.0f;
- predictions[i*4 + 0] = ymin;
- predictions[i*4 + 1] = xmin;
- predictions[i*4 + 2] = ymax;
- predictions[i*4 + 3] = xmax;
- }
- }
- int scaleToInputSize(float * outputClasses, int (*output)[NUM_RESULTS], int numClasses)
- {
- int validCount = 0;
- // Scale them back to the input size.
- for (int i = 0; i < NUM_RESULTS; ++i) {
- float topClassScore = static_cast<float>(-1000.0);
- int topClassScoreIndex = -1;
- // Skip the first catch-all class.
- for (int j = 1; j < numClasses; ++j) {
- float score = expit(outputClasses[i*numClasses+j]);
- if (score > topClassScore) {
- topClassScoreIndex = j;
- topClassScore = score;
- }
- }
- if (topClassScore >= MIN_SCORE) {
- output[0][validCount] = i;
- output[1][validCount] = topClassScoreIndex;
- ++validCount;
- }
- }
- return validCount;
- }
- int nms(int validCount, float* outputLocations, int (*output)[NUM_RESULTS])
- {
- for (int i=0; i < validCount; ++i) {
- if (output[0][i] == -1) {
- continue;
- }
- int n = output[0][i];
- for (int j=i + 1; j<validCount; ++j) {
- int m = output[0][j];
- if (m == -1) {
- continue;
- }
- float xmin0 = outputLocations[n*4 + 1];
- float ymin0 = outputLocations[n*4 + 0];
- float xmax0 = outputLocations[n*4 + 3];
- float ymax0 = outputLocations[n*4 + 2];
- float xmin1 = outputLocations[m*4 + 1];
- float ymin1 = outputLocations[m*4 + 0];
- float xmax1 = outputLocations[m*4 + 3];
- float ymax1 = outputLocations[m*4 + 2];
- float iou = CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1);
- if (iou >= NMS_THRESHOLD) {
- output[0][j] = -1;
- }
- }
- }
- return 0;
- }
- int main(int argc, char** argv)
- {
- const char *img_path = "./vgg_ssd/road_300x300.jpg";
- const char *model_path = "./vgg_ssd/vgg_ssd.rknn";
- const char *label_path = "./vgg_ssd/label.txt";
- const char *box_priors_path = "./vgg_ssd/mbox_priorbox_97.txt";
- //const char *img_path = "/tmp/road.bmp";
- //const char *model_path = "/tmp/mobilenet_ssd.rknn";
- //const char *label_path = "/tmp/coco_labels_list.txt";
- //const char *box_priors_path = "/tmp/box_priors.txt";
- const int img_width = 300;
- const int img_height = 300;
- const int img_channels = 3;
- const int input_index = 0; // node name "Preprocessor/sub"
- const int output_elems1 = NUM_RESULTS * 4;
- const uint32_t output_size1 = output_elems1 * sizeof(float);
- const int output_index1 = 0; // node name "concat"
- const int output_elems2 = NUM_RESULTS * NUM_CLASSES;
- const uint32_t output_size2 = output_elems2 * sizeof(float);
- const int output_index2 = 1; // node name "concat_1"
- // Load image
- cv::Mat img = cv::imread(img_path, 1);
- if(!img.data) {
- printf("cv::imread %s fail!\n", img_path);
- return -1;
- }
- if(img.cols != img_width || img.rows != img_height)
- cv::resize(img, img, cv::Size(img_width, img_height), (0, 0), (0, 0), cv::INTER_LINEAR);
- // Load model
- FILE *fp = fopen(model_path, "rb");
- if(fp == NULL) {
- printf("fopen %s fail!\n", model_path);
- return -1;
- }
- fseek(fp, 0, SEEK_END);
- int model_len = ftell(fp);
- void *model = malloc(model_len);
- fseek(fp, 0, SEEK_SET);
- if(model_len != fread(model, 1, model_len, fp)) {
- printf("fread %s fail!\n", model_path);
- free(model);
- return -1;
- }
- // Start Inference
- rknn_input inputs[1];
- rknn_output outputs[2];
- rknn_tensor_attr outputs_attr[2];
- int ret = 0;
- rknn_context ctx = 0;
- ret = rknn_init(&ctx, model, model_len, RKNN_FLAG_PRIOR_MEDIUM);
- if(ret < 0) {
- printf("rknn_init fail! ret=%d\n", ret);
- goto Error;
- }
- outputs_attr[0].index = 0;
- ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(outputs_attr[0]), sizeof(outputs_attr[0]));
- if(ret < 0) {
- printf("rknn_query fail! ret=%d\n", ret);
- goto Error;
- }
- outputs_attr[1].index = 1;
- ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(outputs_attr[1]), sizeof(outputs_attr[1]));
- if(ret < 0) {
- printf("rknn_query fail! ret=%d\n", ret);
- goto Error;
- }
- inputs[0].index = input_index;
- inputs[0].buf = img.data;
- inputs[0].size = img_width * img_height * img_channels;
- inputs[0].pass_through = false;
- inputs[0].type = RKNN_TENSOR_UINT8;
- inputs[0].fmt = RKNN_TENSOR_NHWC;
- ret = rknn_inputs_set(ctx, 1, inputs);
- if(ret < 0) {
- printf("rknn_input_set fail! ret=%d\n", ret);
- goto Error;
- }
- ret = rknn_run(ctx, nullptr);
- if(ret < 0) {
- printf("rknn_run fail! ret=%d\n", ret);
- goto Error;
- }
- outputs[0].want_float = true;
- outputs[0].is_prealloc = false;
- outputs[1].want_float = true;
- outputs[1].is_prealloc = false;
-
- clock_t start,finish;
- double totaltime;
- start = clock();
- ret = rknn_outputs_get(ctx, 2, outputs, nullptr);
- finish=clock();
- totaltime=(double)(finish-start)/CLOCKS_PER_SEC;
- cout<<"程序的inference时间为"<<totaltime<<"秒!"<<endl;
- if(ret < 0) {
- printf("rknn_outputs_get fail! ret=%d\n", ret);
- goto Error;
- }
-
-
- // Process output
- if(outputs[0].size == outputs_attr[0].n_elems*sizeof(float) && outputs[1].size == outputs_attr[1].n_elems*sizeof(float))
- {
- float boxPriors[4][NUM_RESULTS];
- string labels[91];
- /* load label and boxPriors */
- loadLabelName(label_path, labels);
- loadCoderOptions(box_priors_path, boxPriors);
- float* predictions = (float*)outputs[0].buf;
- float* outputClasses = (float*)outputs[1].buf;
- int output[2][NUM_RESULTS];
- /* transform */
- decodeCenterSizeBoxes(predictions, boxPriors);
- start = clock();
- int validCount = scaleToInputSize(outputClasses ,output, NUM_CLASSES);
- finish=clock();
- totaltime=(double)(finish-start)/CLOCKS_PER_SEC;
- cout<<"程序的scaleToInputSize时间为"<<totaltime<<"秒!"<<endl;
- printf("validCount: %d\n", validCount);
- if (validCount < 100) {
- /* detect nest box */
- start = clock();
- nms(validCount, predictions, output);
- finish=clock();
- totaltime=(double)(finish-start)/CLOCKS_PER_SEC;
- cout<<"程序的nms时间为"<<totaltime<<"秒!"<<endl;
- start = clock();
- Mat rgba = imread(img_path, CV_LOAD_IMAGE_UNCHANGED);
- cv::resize(rgba, rgba, cv::Size(300, 300), (0, 0), (0, 0), cv::INTER_LINEAR);
- finish=clock();
- totaltime=(double)(finish-start)/CLOCKS_PER_SEC;
- cout<<"程序的imread时间为"<<totaltime<<"秒!"<<endl;
-
- start = clock();
- /* box valid detect target */
- for (int i = 0; i < validCount; ++i) {
- if (output[0][i] == -1) {
- continue;
- }
- int n = output[0][i];
- int topClassScoreIndex = output[1][i];
- int x1 = static_cast<int>(predictions[n * 4 + 1] * rgba.cols);
- int y1 = static_cast<int>(predictions[n * 4 + 0] * rgba.rows);
- int x2 = static_cast<int>(predictions[n * 4 + 3] * rgba.cols);
- int y2 = static_cast<int>(predictions[n * 4 + 2] * rgba.rows);
- string label = labels[topClassScoreIndex];
- std::cout << label << "\t@ (" << x1 << ", " << y1 << ") (" << x2 << ", " << y2 << ")" << "\n";
- rectangle(rgba, Point(x1, y1), Point(x2, y2), colorArray[topClassScoreIndex%10], 3);
- putText(rgba, label, Point(x1, y1 - 12), 1, 2, Scalar(0, 255, 0, 255));
- }
- imwrite("out.jpg", rgba);
- //printf("write out.jpg succ!\n");
- finish=clock();
- totaltime=(double)(finish-start)/CLOCKS_PER_SEC;
- cout<<"程序的draw时间为"<<totaltime<<"秒!"<<endl;
- } else {
- printf("validCount too much!\n");
- }
- }
- else
- {
- printf("rknn_outputs_get fail! get outputs_size = [%d, %d], but expect [%lu, %lu]!\n",
- outputs[0].size, outputs[1].size, outputs_attr[0].n_elems*sizeof(float), outputs_attr[1].n_elems*sizeof(float));
- }
-
-
- rknn_outputs_release(ctx, 2, outputs);
- Error:
- if(ctx) rknn_destroy(ctx);
- if(model) free(model);
- if(fp) fclose(fp);
- return 0;
- }
|
|